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Abstract： It has often been reported that, when building structures are subjected to 

near-fault earthquake ground motions, horizontal and vertical impulsive inputs during 

the first few seconds may cause critical damage.  In practical design of building 

structures, however, the safety check taking into account the effect of multi-component 

ground motions is hardly conducted except the design of important structures such as 

high-rise buildings and nuclear power plants.  Furthermore, it is not clear how the 

correlation of multi-component ground motions influences the actual safety of 

structures.  In this paper, the detailed property of critical excitation is discussed in 

association with the relationship between the characteristics of ground motions and 

those of structures.  The properties of various auto power spectral density (PSD) 

functions of the horizontal and vertical ground motions are investigated, and those of 

the critical cross power spectrum density function (critical cross PSD) of these 

two-directional ground motions are found by a devised algorithm in a feasible complex 

plane.  A closed-form expression is derived of the critical relation of the auto PSD 

functions of the simultaneous inputs.  This critical excitation method provides us with 

a new approach for earthquake-resistant design against the possible future earthquake 

which causes the critical damages to buildings.  
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INTRODUCTION  

After the Hyogoken-Nambu earthquake (1995), various discussions have been 

made on the possibility of occurrence and existence of impulsive and simultaneous 

inputs from horizontal and vertical directions to building structures (e.g. Japanese 

Geotechnical Society, 1996).  This kind of great earthquake ground motions occurs in 

the long return period (Strasser and Bommer 2009) and it may be difficult to investigate 

the actual recorded ground motions of large intensity and with various properties. 

In order to overcome this difficulty, several critical excitation approaches have been 

proposed and various useful methods have been provided (Drenick, 1970; Abbas and 

Manohar, 2002a, b, 2007; Abbas and Takewaki 2009; Iyengar and Manohar, 1987; 

Manohar and Sarkar, 1995; Sarkar and Manohar, 1996; Takewaki, 2001, 2002, 2004a, b, 

2006a, b; Fujita et al, 2008).  The work by Sarkar and Manohar (1996, 1998) and 

Abbas and Manohar (2002b) are concerned with the present paper although their papers 

deal with different models of multiple inputs at different points.  Sarkar and Manohar 

(1996, 1998) formulated an interesting problem and solved the problem within the 

framework of limited variables.  In particular, they treat only correlation in terms of 

‘the absolute value’ of the cross PSD function (root mean square of sum of the squares 

of co-spectrum and quad-spectrum).  On the other hand, Abbas and Manohar (2002b) 

presented another interesting method including detailed analysis of cross-correlation 

between multiple inputs at different points. 

In most of the current structural design practice of building structures, safety and 

functionality checks are made with respect to one-directional earthquake input.  It may 

also be understood that an approximate safety margin is incorporated in the magnitude 

of one-directional input.  However a more reliable method is desired (for example see 

Smeby and Der Kiureghian 1985 for multi-component input).  In this paper, horizontal 

and vertical simultaneous ground motions are treated and critical aspects of these 

ground motions are discussed in detail.  The combinations of auto PSD functions of 
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respective inputs are key parameters for discussion.  A closed-form expression of the 

critical relation of the auto PSD functions of simultaneous inputs is derived and detailed 

analysis of the critical relation is provided. 

 

ANALYSIS OF COHERENCE OF RECORDED BI-DIRECTIONAL GROUND 

MOTIONS   

In this paper, the coherence function is assumed to be fixed at 1.0.  This 

assumption means that horizontal and vertical ground motions are fully correlated, but it 

is not commonly known what degree of correlation the multi-component ground 

motions have.  For this reason, it is meaningful to investigate the correlation between 

recorded bi-directional ground motions. 

Fig.1(a-1) shows the representative acceleration records of El Centro NS and UD 

(Imperial Valley 1940), Fig.1(b-1) those of NIG018 NS and UD (Niigataken 

Chuetsu-oki 2007), and Fig.1(c-1) those of JMA Kobe NS and UD (Hyogoken-Nambu 

1995).  Table 1 indicates the area (power) of the auto PSD function of these ground 

motions.  For these data, Figs.2(a-c) indicate the distribution of coherence functions 

for three time intervals.  The auto PSD functions and cross PSD functions have been 

calculated from the Fourier transforms by using the Welch-Bartlett’s method.  As 

shown in Figs.1(a-2, b-2, c-2), the starting time of the window with the duration T (5s in 

El Centro, NIG018 and JMA Kobe) was changed successively (time-lag of 0.02s for El 

Centro and JMA Kobe and 0.01s for NIG018) and the corresponding set of data for the 

50 windows was chosen to represent candidates of the ensemble mean.  Then the 

ensemble mean was taken of the functions computed from the Fourier transforms.  It 

can be observed that the coherence strongly depends on the type of earthquake ground 

motions.  Furthermore, it has been investigated that the coherence also depends on the 

portion of ground motions.  The prediction of the coherence function before its 

occurrence is quite difficult and the critical excitation method will provide a meaningful 
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insight even in these circumstances. 

 

MODELING OF HORIZONTAL AND VERTICAL STOCHASTIC GROUND 

MOTIONS 

It is assumed here that horizontal and vertical simultaneous ground motions 

(HVGM) can be described by the following uniformly modulated non-stationary model. 
 

( ) ( ) ( )g u uu t c t w t=                           (1) 

( ) ( ) ( )g v vv t c t w t=                           (2) 
 

where ( ) ( ),u vc t c t  are the envelope functions and ( ) ( ),u vw t w t  are the stationary 

random processes (zero-mean Gaussian).  The time lag between the horizontal and 

vertical ground motions can be expressed in terms of ( ) ( ),u vc t c t .   

The envelope function ( )uc t  is given by  
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The envelope function ( )vc t  can also be given by Eq.(3).  Fig.3(a) shows an example 

of the envelope function. 

The stationary random processes (zero-mean Gaussian) ( ) ( ),u vw t w t  can be 

generated from the auto PSD functions.  Given these two functions, the 

multi-component ground motion can then be generated by the multiplication of these 

functions (see Fig.3(b)).         
 

STRUCTURAL MODEL SUBJECTED TO HORIZONTAL AND VERTICAL 

SIMULTANEOUS GROUND INPUTS  

Consider a moment-resisting frame subjected to HVGM.  The columns have a 

square-tube cross section and the beams have a wide-flange cross section as shown in 



 5

Fig.4.  The storey height is H and the span length of the frame is L .  Let ,E  ,bI  cI  
denote the Young’s modulus of the beam and columns, the second moment of area of 

beam and that of column, respectively. 

Assume that the vibration in each direction of the moment-resisting frame can be 

expressed by the single-degree-of-freedom (SDOF) model.  The equivalent horizontal 

and vertical stiffnesses ,u vk k  of the SDOF model is expressed respectively by (Fujita 

et al. 2008b) 
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The bending moments at the beam-end under the respective input of HVGM may be 

expressed by 
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( )u t =horizontal displacement of node B and ( )v t = vertical displacement of the central 

point of floor. 

Let u u uk mω = , v v vk mω =  denote the fundamental natural circular 

frequencies in the horizontal and vertical vibrations, respectively, of the SDOF model.  

The horizontal and vertical displacements of the floor can be derived as 
 

( ) ( ){ } ( )
0

t
g uu t u g t dτ τ τ= − −∫                 (8) 

( ) ( ){ } ( )
0

t
g vv t v g t dτ τ τ= − −∫                  (9) 

 

where ( ) , ( )u vg t g t = unit impulse response functions. 



 6

By using Eqs.(6)-(9), ( )uM t  and ( )vM t  can be expressed as  
 

( ) ( ){ } ( )
0

t
u Mu g uM t A u g t dτ τ τ= − −∫           (10) 

( ) ( ){ } ( )
0

t
v Mv g vM t A v g t dτ τ τ= − −∫        (11) 

 

STOCHASTIC RESPONSE IN FREQUENCY DOMAIN  

The bending moments at the beam-end under the respective input of HVGM is 

expressed by the sum of responses to each direction as bellow  
  

( ) ( ) ( )u vf t M t M t= +                (12) 
  

The auto-correlation function of ( )f t  can be expressed by  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2 1 2
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  (13) 

where E[  ] denotes the ensemble mean.  Eq.(13) consists of four terms in time 

domain.  These terms will be evaluated in detail in the following. 

The auto-correlation function of the bending moment due to the horizontal input, i.e. 

the first term in Eq.(13), can be formulated in frequency domain by (Fujita et al. 2008b)  
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where 

( ) ( ) ( )
0

; cos
t

c u uB t c g t dω τ τ ωτ τ= −∫            (15)
 

( ) ( ) ( )
0

; sin
t

s u uB t c g t dω τ τ ωτ τ= −∫          (16) 
 

The auto-correlation function of the bending moment due to the vertical input, i.e. 
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the fourth term in Eq.(13), can be expressed as follows by the same procedure 

developed for the first term.  
 

( ) ( ) ( ) ( )2 2 22 ; ;v Mu c s vvE M t A C t C t S dω ω ω ω
∞

−∞
⎡ ⎤ ⎡ ⎤= +  
⎣ ⎦ ⎣ ⎦∫        (17) 

where 

( ) ( ) ( )
0

; cos
t

c v vC t c g t dω τ τ ωτ τ= −∫             
(18) 

( ) ( ) ( )
0

; sin
t

s v vC t c g t dω τ τ ωτ τ= −∫             
(19)

 
 

The cross-correlation function of the bending moment due to HVGM can be 

formulated by some manipulations. The cross-correlation function of the functions 

( )uw t  and ( )vw t  can be expressed in terms of the cross PSD function 

( )uvS ω described by   
 

( ) ( ) ( ) ( ){ } ( )1 2i
1 2 iu v uv uvE w w C Q e dω τ ττ τ ω ω ω

∞ −
−∞

⎡ ⎤ = +  ⎣ ⎦ ∫          (20) 
 

where ( )uvC ω  and ( )uvQ ω  are the real part (co-spectrum) and imaginary part 

(quad-spectrum) of ( )uvS ω , respectively (Nigam, 1981).  By substituting Eq.(20) into 

the cross-correlation function in frequency domain, the cross term, i.e. the sum of the 

second and third terms in Eq.(13), can be written by 
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( ) ( ) ( ) ( ){ }1 22 ; ;
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where  

( ) ( ) ( ) ( ) ( )1 ; ; ; ; ;c c s sf t B t C t B t C tω ω ω ω ω= +     (22a) 

( ) ( ) ( ) ( ) ( )2 ; ; ; ; ;c c s sf t B t C t B t C tω ω ω ω ω= −     (22b) 
                         

Finally, the mean-squares of the sum of bending moments at beam-end may be 

expressed by  
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CRITICAL EXCITATION METHOD FOR WORST CROSS PSD FUNCTION 

OF HVGM  

The critical excitation problem may be stated as: Find the cross PSD function 

12 12 12( ) ( )+i ( )S C Qω ω ω=  of HVGM so as to achieve 2
( )

max max [{ ( ) ( )} ]u v
S tuv

E M t M t
ω

+ . 

When t is fixed and ω  is specified, the transfer functions ( )1 ;f t ω  and ( )2 ;f t ω  

defined in Eqs.(22a, b) can be regarded as pre-determined coefficients, not functions of t 

and ω .  Therefore the integrand in the second term of Eq.(23) can be regarded as the 

function ( ),uv uvz C Q  of uvC  and uvQ . 
 

( ) ( ) ( ) ( ) ( )1 2, ; ;uv uv uv uvz C Q f t C f t Qω ω ω ω= +    (24) 
 

Fig.5 illustrates the structure of the critical excitation problem.  The critical excitation 

problem is to maximize the function ( ),uv uvz C Q  under the constraint 2 2
u v uvC Q+ =  

( ) ( )uu vvS Sω ω .  This constraint corresponds to the assumption of the existence of a 

fully correlated multi-component ground input.  The critical co-spectrum and 

quad-spectrum can then be obtained analytically as (Fujita et al., 2008a, b) 
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ω ω
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Fig.6 indicates the solution algorithm.  By substituting Eqs.(25) and (26) into 

Eq.(21),  Eq.(21) can be rewritten as the worst cross term maximizing the response 
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quantity. 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2
1 22 ; ;

u v v u

Mu Mv uu vv

E M t M t E M t M t

A A f t f t S S dω ω ω ω ω
∞
−∞

⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦

= +∫
  (27) 

 

Finally, Eq.(27) gives the closed-form worst cross term.  In the integrand of Eq.(27), it 

can be observed that the property (transfer function ( ) ( )2 2
1 2; ;f t f tω ω+ ) of a 

structure and that ( ) ( )uu vvS Sω ω  of ground motions are given separately.  It can be 

understood that the relation between ( )uuS ω  and ( )vvS ω  is the key factor for the 

criticality (see Fig.7). 

 

CLOSED-FORM EXPRESSION OF THE WORST COMBINATION OF PSD 

FUNCTIONS 

It can also be observed from Eq.(27) that the increase of response due to the 

correlation between multi-component ground motions from the SRSS response is 

indirectly related with the integration ( ) ( )uu vvS S dω ω ω
∞
−∞∫  of geometric mean of 

both auto PSD functions.  Under the constraint that the properties (shape) of respective 

auto PSD functions of ground motions are given (e.g. through the square of the velocity 

design spectrum (Fujita et al., 2008a, b)), the critical correlation in Eq.(27) can be 

calculated based on the properties of a structure.  However, since there may exist 

uncertainties with respect to the auto PSD functions of ground motions, it does not seem 

enough to consider the critical excitation problem under the constraint mentioned above.  

For this reason, let us find the worst combination of auto PSD functions which 

maximize the structural response under the constraint that the powers (areas) of the auto 

PSD functions are constant.  
Iyenger and Manohar (1987) expressed the square root of the PSD function of the 

excitation in terms of linear combination of orthonormal function and determine their 

coefficients through eigenvalue analysis. Takewaki (2001) introduces more simple 
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probabilistic approach to define the PSD function as a band limited white noise 

(rectangle one).  In the problem for one-directional input, the critical PSD function can 

be given by the resonant band limited white noise, not the velocity design spectrum, 

under the constraint that the area of the PSD function and the upper bound of the PSD 

function are given (see Fig.8).  In this paper, the central circular frequencies of the 

PSD functions of HVGM are assumed to be given by the resonant ones. 

As a constraint on the excitations, the following ones are introduced. 
 

( )uu uS d Sω ω
∞

−∞
≤∫  (28a) 

 

( )vv vS d Sω ω
∞

−∞
≤∫  (28b)         

 

The value of uS and vS  should be given appropriately according to the analysis of the 

auto PSD functions of recorded earthquake ground motions. 

When ,u vω ω  denote the fundamental natural circular frequencies in the horizontal 

and vertical directions of the structure and ,U VΩ Ω  express halves of the band widths 

of the auto PSD functions in the horizontal and vertical directions (Fig.9), the term 

( ) ( )uu vvS S dω ω ω
∞
−∞∫  can be expressed as 
    

( ) ( ) {( ) / 2 }uu vv u U V u v
U V

S S d Sαω ω ω ω ω
∞
−∞

= Ω + Ω − −
Ω Ω∫  (29) 

 

where /v uS Sα = .  In Eq.(29), it has been assumed that the central frequency of the 

auto PSD function coincides with the natural frequency of the structural model in both 

directions.  The stationary point of Eq.(29) with respect to ,U VΩ Ω  can be derived by 

differentiating Eq.(29) with respect to ,U VΩ Ω .  The solution can be obtained as 
 

2U V u vω ωΩ = Ω = −  (30) 
 

Eq.(30) implies that, if u vω ω= , 0U VΩ = Ω = .  This indicates that the worst input is 

the Dirac delta function in each direction in this model.  However it should be noted 
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that the simplification from Eq.(27) into Eq.(29) is approximate and a fairly large error 

may arise depending on the model. 

 

NUMERICAL ANALYSIS  

The structural model analyzed in this section is shown in Fig.10.  Two models with 

the span lengths L=17(m) and 24(m) are treated.  The given geometrical and structural 

parameters are shown in Tables 2 and 3.  Fig.11 illustrates the transfer functions 
2 2

1 2( ; ) ( ; )f t f tω ω+  for these two models.  It can be observed that, while a simple 

and clear peak exists in the model of L=17(m) due to the coincidence of both natural 

frequencies, a complex form arises in the model of L=24(m) due to the non-coincidence 

of both natural frequencies.  Table 1 shows the values of uS  and vS  for the 

above-mentioned recorded ground motions.  The maximum value of uS  is less than 

9( 2 4m *rad/s ).  Based on this analysis, uS  and vS  are given by 10( 2 4m *rad/s ) 

and 2.5( 2 4m *rad/s ). 

Fig.12 compares the root-mean-square of the bending moment due to the critical 

combination of multi-input with that due to the SRSS response without correlation 

terms.  The left figure is drawn for the model of L=17(m) and the right one is drawn 

for the model of L=24(m).  These figures are plotted with respect to VΩ  for the fixed 

horizontal input circular frequency 5(rad/s)UΩ = .  It can be observed that, while in 

the model of L=24(m) the difference between the bending moment due to the critical 

combination of multi-input and that due to the SRSS response is very small, that is 

fairly large in the model of L=17(m). 

According to Eq.(30), the stationary value of VΩ  is about 0.1(rad/s) in the model 

of L=17(m).  However, Fig.12 indicates that the maximum correlation term occurs 

around 0.2-0.5(rad/s).  This may result from the approximation employed in the 

derivation of Eqs.(29) and (30).  On the other hand, the stationary value of VΩ  is 

about 5.8(rad/s) in the model of L=24(m).  This corresponds fairly well with Fig.12(b). 
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In the case of narrow band of UΩ  and VΩ , the bending moment tends to be 

increased by the resonance effect.  In addition, the bending moment can also be 

increased by the input correlation effect.  Taking into account these two effects, the 

occurrence possibility of the worst combination of auto PSD functions can be 

investigated for each structural model (see Fig.13).  Fig.13(a) for the model of 

L=17(m) indicates that the close location of natural frequencies in the horizontal and 

vertical directions causes the critical combination of auto PSD functions of HVGM as 

the largely overlapped shape.  On the other hand, Fig.13(b) for the model of L=24(m) 

illustrates that the separated location of natural frequencies in the horizontal and vertical 

directions provides the critical combination of auto PSD functions of HVGM as the 

un-overlapped shape.   

Figs.14(a-1) and (a-2) show the 3D comparison of the root-mean-square of the 

bending moment to the critically correlated multi-input with that to the multi-input 

without correlation for the model of L=17(m) with respect to UΩ  and VΩ .  On the 

other hand, Figs.14(b-1) and (b-2) illustrate the corresponding comparison for the model 

of L=24(m).  It is found that, while the model of L=17(m) exhibits a remarkable 

difference between both cases, the model of L=24(m) indicates a similar property 

between both cases.  The influence of the band-widths of the auto PSD functions on 

the critical response can be observed clearly from these 3D figures. 

Fig.15 illustrates the quantity of Eq.(27) for the critically correlated multi-input with 

respect to UΩ  and VΩ  for the models of L=17(m) and 24(m).  While the 

fundamental natural frequency of the model in the horizontal direction is almost equal 

to that in the vertical direction in the model of L=17(m), both are different in the model 

of L=24(m).  These characteristics may cause the difference in Fig.15. 

 

CONCLUSIONS 

 A new stochastic model of multi-component ground motion has been proposed in 
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which the critical cross PSD function between the horizontal and vertical ground 

motions (HVGM) can be directly treated in the feasible complex plane.  The following 

conclusions have been derived. 

1. A critical excitation problem has been formulated for a moment-resisting frame 

subjected to HVGM.  These multi-component ground motions are characterized by 

a non-stationary stochastic model consisting of a given deterministic envelope 

function and a stochastic zero-mean Gaussian process. 

2. The mean-squares bending moment at the beam-end has been shown to be the sum 

of the independent term due to each of HVGM and that due to their correlation.  

Each term have been formulated in the frequency domain.  In the cross term of 

HVGM, the real part (co-spectrum) and imaginary part (quad-spectrum) of the cross 

PSD function can be regarded as independent variables.  Since the auto PSD 

functions of HVGM are given and prescribed, the maximization in the critical 

excitation problem means the maximization of their correlation term. 

3. The co-spectrum and quad-spectrum of the worst cross PSD function can be 

obtained by a devised algorithm including the interchange of the double 

maximization procedure in the time and cross PSD function domains.  These 

expressions and the corresponding critical response have been described in closed 

form. 

4. A closed-form expression of the critical relation of the auto PSD functions of 

simultaneous inputs has been derived in association with the relation with the 

horizontal and vertical structural properties. 

5. Numerical examples indicate that the proposed algorithm can work very well.  The 

root-mean-square of the bending moment at the beam-end to the critical 

combination of the HVGM can become fairly larger than that by the SRSS estimate 

depending on the relation of the auto PSD functions of simultaneous inputs with the 

horizontal and vertical structural properties.  The overlapping area of the auto PSD 
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functions of HVGM in the frequency domain directly influences the critical cross 

PSD function between HVGM.  These investigations have been made possible via 

the closed-form solutions stated above. 

6. The coherence function between the HVGM of recorded earthquakes has been 

calculated and compared with the assumption introduced here.  The coherence and 

cross PSD functions strongly depend on the type of earthquake ground motions and 

its portion.  The prediction of coherence before their occurrence seems quite 

difficult.  The critical excitation method will provide a meaningful insight even in 

these circumstances. 

 

For simple and clear presentation of the essence of the formulation, a simple SDOF 

system has been treated in this paper.  The extension of the present formulation to 

MDOF or continuum models with finite-element discretization will be conducted in the 

future. 

 

Acknowledgements 

Part of the present work is supported by the Grant-in-Aid for Scientific Research of 

Japan Society for the Promotion of Science (No.18360264, 21360267).  This support is 

greatly appreciated. 

 

References 

Abbas, A.M. and Manohar, C.S., 2002a. Investigating into critical earthquake load 

models within deterministic and probabilistic frameworks. Earthq. Engrg. Struct. 

Dyn., 31(4), 813-832. 

Abbas, A.M. and Manohar, C.S., 2002b. Critical spatially varying earthquake load 

models for extended structures. J. Struct. Engrg., 29(1), 39-52 



 15

Abbas, A.M. and Manohar, C.S., 2007. Reliability-based vector nonstationary random 

critical earthquake excitations for parametrically excited systems. Struct. Safety, 

29, 32–48. 

Abbas, A.M. and Takewaki, I., 2009. The use of probabilistic and deterministic 

measures to identify unfavorable earthquake records. J. Zhejiang University- 

SCIENCE A, 10(5), 619-634 

Drenick, R.F., 1970. Model-free design of aseismic structures. J. Engrg. Mech. Div., 

ASCE, 96(EM4), 483-493 

Fujita, K., Yoshitomi, S., Tsuji, M. and Takewaki, I., 2008a. Critical cross-correlation 

function of horizontal and vertical ground motions for uplift of rigid block, Engrg. 

Structures, 30(5), 1199-1213. 

Fujita, K., Takewaki, I., and Nakamura, N., 2008b. Critical disturbance for stress 

resultant in long-span moment-resisting frames subjected to horizontal and vertical 

simultaneous ground inputs, J. Struct. Construction Engrg., AIJ, 626, 551-558 (in 

Japanese). 

Iyengar, R.N., and Manohar, C.S., 1987. Nonstationary random critical seismic 

excitations. J. Engrg. Mech., ASCE, 113(4), 529-541. 

Japanese Geotechnical Society, 1996. Special issue on geotechnical aspects of the 

January 17 1995 Hyogoken- Nambu Earthquake, Soils and Foundations. 

Manohar, C.S., and Sarkar, A., 1995. Critical earthquake input power spectral density 

function models for engineering structures. Earthq. Engrg. Struct. Dyn., 24, 

1549-1566. 

Nigam, N.C., 1981. Introduction to Random Vibrations, MIT Press. 

Sarkar, A., and Manohar, C.S., 1996. Critical cross power spectral density functions and 

the highest response of multi-supported structures subjected to multi-component 

earthquake excitations. Earthq. Engrg. Struct. Dyn., 25, 303-315. 

Smeby, W., and Der Kiureghian, A., 1985. Modal combination rules for multicomponent 



 16

earthquake excitation. Earthq. Engrg. Struct. Dyn., 13, 1-12. 

Strasser, F.O., and Bommer, J.J., 2009. Large-amplitude ground-motion recordings and 

their interpretations. Soil Dyn. Earthq. Engrg., 29(10), 1305-1329. 

Takewaki, I., 2001. A new method for nonstationary random critical excitation. Earthq. 

Engrg. Struct. Dyn., 30(4), 519-535. 

Takewaki, I., 2002. Seismic critical excitation method for robust design: A review. J. 

Struct. Engrg., ASCE, 128(5), 665-672. 

Takewaki, I., 2004a. Critical envelope functions for non-stationary random earthquake 

input. Computers & Structures, 82(20-21), 1671-1683. 

Takewaki, I., 2004b. Bound of earthquake input energy. J. Struct. Engrg., ASCE, 

130(9), 1289-1297. 

Takewaki, I., 2006a. Probabilistic critical excitation method for earthquake energy input 

rate. J. Engrg. Mech., ASCE, 132(9), 990-1000. 

Takewaki, I., 2006b. Critical Excitation Methods in Earthquake Engineering, Elsevier 

Science, Oxford. 

 



 1

 
Table 1 Area of auto PSD function for recorded ground motion 

 

Recorded ground motions  
Horizontal power 

(m2*rad/s4) 
Vertical power  

(m2*rad/s4) 
El Centro NS, UD (1940) 1.478 0.365 
NIG018 NS, UD (2007) 8.878 2.253 

JMA Kobe NS, UD (1995) 8.001 1.733 
 

 
Table 2 Structural member properties 

 
 Column beam 

cross-section □-1000 
×1000×30 

H-1200 
×600×40×32 

cross-sectional area (mm2) 1.16×105 8.38×104 

second moment of area (mm4) 1.83×1010
 1.99×1010

 
mass per unit length (kg/m) 912 657 

      
Table 3 Geometrical and structural parameters 

 
Span length 17 .0mL =  24 .0mL =  

horizontal stiffness uk  (N/mm) 2.18×108 1.95×108 

vertical stiffness vk  (N/mm) 1.07×108 4.16×107 

mass in horizontal direction um  (kg) 1.79×106 2.70×106 

mass in vertical direction vm  (kg) 0.89×106 1.35×106 

horizontal natural period uT  (s) 0.569 0.741 

vertical natural period vT  (s) 0.572 1.131 
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Figure 1 Acceleration records of  
(a) El Centro 1940 NS and UD (Imperial Valley Earthquake)  
(b) Nig 018 2007 NS and UD ( Niigata-Ken Chuuetsu Oki earthquake) 
(c) JMA Kobe 1995 NS and UD (Hyogo-Ken Nambu earthquake) 
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Figure 2 Coherence functions of recorded accelerations 

(a) El Centro 1940 NS and UD (Imperial Valley Earthquake)  
(b) Nig 018 2007 NS and UD ( Niigata-Ken Chuuetsu Oki earthquake) 
(c) JMA Kobe 1995 NS and UD (Hyogo-Ken Nambu earthquake) 
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Figure 3 Example of non-stationary ground motion 
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Figure 4 One-story one-span plane frame consisting of beam of wide-flange cross-section and column 
of square-tube cross-section 
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Figure 5 Structure of the critical excitation problem 
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Figure 6 Solution algorithm of the critical excitation problem 
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Figure 7 Relationship between horizontal and vertical PSD functions with regard to the response 

increase effect caused by correlation 
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Figure 8 Relationship between auto PSD functions (band limited white noise and design spectrum) 
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Figure 9 Variable PSD functions in respective directions 
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Figure 10 One-story one-span moment resisting frame 
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Figure 11 Transfer function 2 2
1 2( ; ) ( ; )f t f tω ω+ , (a) 17mL =  (b) 24mL =  
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Figure 12 Comparison of the RMS bending moment to critically correlated multi-input with that to 
multi-input without correlation, (a) 17mL = , (b) 24mL =  
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Figure 13 Critical combination of auto PSD functions of HVGM, (a) 17mL = , (b) 24mL =   

(a) 

(b) 
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(a-1)      (a-2) 

 
(b-1)      (b-2) 

 
Figure 14 Three-dimentional comparison of the RMS bending moment to critically correlated 

multi-input with that to multi-input without correlation,   
(a-1, b-1), without correlation ( 17mL = , 24mL = ), (a-2, b-2), critically correlated ( 17mL = , 24mL = ) 
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Figure 15 Quantity of Eq.(29) for critically correlated multi-input with respect to UΩ  and VΩ  
(a) 17mL = , (b) 24mL =  
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