3. 超伝導と他秩序共存系の二・三の問題

神 山 保

超伝導とCDW, 反強磁性, SDWとの共存問題について論じる。

CDW- 超伝導共存系では,超伝導は BCS 状態ではなく, BCS 秩序パラメーター $\Delta(0)$ の他に CDWの波数 Q で空間的に振動する秩序パラメーター $\Delta(Q)$ の存在する状態であることを示す。 Q に平行な上部臨界磁場 $H_{c_2}^{\parallel}$ は BCS 超伝導体と同様転移温度 T_c 近傍で直線的温度変化を示すが, Q に垂直な上部臨界磁場 $H_{c_2}^{\perp}$ の温度変化は $\Delta(Q)$ の影響により T_c 近傍で正曲率を持つ。

次に反強磁性 - 超伝導共存系において超伝導電子が反強磁性マグノンに及ぼす影響を調べる。 CDW - 超伝導共存系では CDWに起因するソフト・フォノンが超伝導電子と結合し、 BCS gap 2 1 近傍に新しくフォノンモードを作る。同様の事情で反強磁性 - 超伝導共存系のマグノンに新しいモードが出現すると期待されるが、強度は非常に弱い事がわかる。

最後に S DW - 超伝導共存系における各秩序度の発達の様子を, C DW - 超伝導共存系と比較し議論する。 S DW は波数 Q で結ばれるフェルミ面の一部(状態密度 $N_1(0)$)で起り, 超伝導は全フェルミ面(状態密度 N(0))で起るとするモデルをとると,各秩序度の発達の様子は三つに分れる。超伝導, S DW の単独の転移温度を T_{c0} , T_{s0} とする。 $T_{c0} > T_{s0}$ の場合, T_{c0} で超伝導に転移し T_{c0} 以下の温度では S DW は出現しない。 $T_{c0} \lesssim T_{s0}$ かつ $N_1(0) \ll N(0)$ の場合, T_{s0} で起った S DW は低温で出現する超伝導により壊される。これは C DW - 超伝導共存系には現われない相である。 $T_{c0} \ll T_{s0}$ かつ $N_1(0) \lesssim N(0)$ の場合, 超伝導の出現により S DW の秩序度は減少するが消滅せず両者は共存する。なお, $T_{c0} < T_{s0}$ の場合,超伝導転移温度 T_{c} は C DW - 超伝導共存系の場合より大きく T_{c0} から下降する。つまり, S DW と超伝導の共存条件は C DW と超伝導の共存条件より厳しいことが理解できる。

4. FT-NMR 法による固体 ³He 中の vacancyと melting

下田正彦

固体 He 中における vacancy は,その量子力学的な運動のゆえに vacancion や vacancy-wave などと呼ばれる。超低温度で vacancy が存在したとすれば,固体の超流動やポーラロン形成(3He)等の現象が予想されており極めて興味深い。しかし熱平衡状態では, vacancy の濃度は温度とともに指数関数的に減少し,現在までのところこのような現象は観測されていない。そ