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Recent advances in a new type of critical phenomena, in which response functions diverge near

the 1st-order phase transition that is not a thermodynamic singular point, have been reviewed from

experimental and theoretical standpoints. These phenomena are now referred to as "pseudo-critical

phenomena" (PCP) which are for the first time introduced by us from ultrasonic studies on binary

fluids. The Ikeda's theoretical classification of PCP based on molecular field theories is discussed.

We have proposed a general concept of "three-circle model", in which more general critical phenome­

na such as nonequilibrium, nonlinear open systems can be included. Finally, our experimental

results of ultrasonic absorptions on PCP in binary fluid systems are presented. It is shown that the

hypercritical state of a multicomponent system of n-BuOH/H20/Ca(SCN)2 is equivalent to the

pseudo-critical state of a binary system of t-BuOH/H20, in which the 2nd-order-like 1st-order phase

transition occurs.

I. INTRODUCTION

Over the past two decades, remarkable progress has been achieved on the studies of phase

transitions and critical phenomena of various systems of gases, fluids, and solids. I) In general critical

phenomena various physical quantities show anomalies near the 2nd-order phase transition point

which is a thermodynamic singular point and response functions such as transport coefficients diverge

at this poin t.

On the other hand, quite recently another type of critical phenomena has been found, in which

response functions diverge even near the 1st-order phase transition point that is not a thermodynamic

singular point. These phenomena are now referred to as "pseudo-critical phenomena" (PCP), which

are for the first time introduced by us from the studies of sound absorptions in binary fluids.2)

Recently, similar phenomena have been observed in a variety of material systems, such as liquid

* Part of this work was presented as an invited paper at the Scientific Meeting of the Physical

Society of Japan, Fukui University, Oct. 1-4,1980, and at the "Symposium on Critical Dynamics

with Professor Ferrell", Kyoto University, June 24-27, 1981.
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crystals,3) binary intermetallic compounds,4) ferroelectrics,S) and metal-nonmetal transitions.6)

Theoretical studies on PCP are first presented by Saito;?) he treated static PCP problems in terms of

renormalization-group theories. More recently, Ikeda has attempted to define the concept of PCP

and developed the unified theories on PCP within the framework of molecular-field theory.8)

According to him, PCP is defined as the critical phenomena, in which "various physical quantities

diverge at the point where "spinodals", or the second derivatives of free energy with respect to order

parameters, vanish".

In this review paper, we shall first show some of typical examples of PCP observed experi-

mentally thus far, and shall review the Ikeda classification of PCP. Then more general classification is

proposed, which we call "Three-circle model", including nonequilibrium, nonlinear open systems.

Finally, our sound absorption studies on PCP in binary fluids will be shown in some detail.

II. EXAMPLES OF PSEUDO-CRITICAL PHENOMENA

(1) Supercooling or metastability limit in liquid gallium

Figure 1. shows the results of neutron scattering experiments by Bosio and Windsor for dispers­

ed emulsions of supercooled Ga.9) The frequency distributions become narrowed as the temperature

is lowered. This indicates that as the metastability limit is approached from above, there is an ap­

proximately logarithmic divergence of the time-averaged fluctuation density S(Qo, W =0) reminiscent

of the approach to a 2nd-order phase transition.

(2) Pretransition in isotropic phases of liquid crystals in relation to nematic-isotropic phase tran­

sition.

As shown in Fig. 2, the reciprocal of the intensity of light scattering in the isotropic phase of

MBBA depends on temperature linearly. The intensity of scattering varies as (T- T*)-l, where T* is

the 1st~order transition point, according to Stinson et al. l 0) Also Bhattacharya et al. have shown that

strong anomalies in the velocity and attenuation of longitudinal sound absorption and dispersion in

the MHz range are observed near the nematic-smectric A phase transition in a liquid crystal. 3) For

the nematic-smectic A phase transition, the possibility of 2nd-order transition has been predicted

theoretically, such as mean field like transition by de Gennes,3) A-like transition by Taylor et al.,l1)

and Hoshino et al.3)

(3) Metal-nonmetal transition in NiS

The metal-nonmetal transition in NiS displays the characteristics of the 1st-order transition, as

found by Trahan and Goodrich. 6) Figure 3 is the temperature dependence of the heat capacity at

constant pressure Cp , where the lattice contribution is subtracted for both heating and cooling runs.
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Fig. 2. Reciprocal of the intensity of light scatter­
ing in the isotropic phase of MBBA vs temperature,
after Stinson et a1.1 0)
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Fig. 1. Constant-Q scans at Qo =
o

2.5A-I (corresponding to the peak in
the structure factor) in bulk and dis­
persed liquid gallium. The solid lines re­
present the best-fit Lorentzians, con­
voluted with the experimental reso­
lution function (shown dotted). The
fitted background is shown dashed.
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Supercooling and subsequent self-heat­

ing of the sample occur, giving negative

values in addition to double-valued

positive specific heats, It can be seen

that the cooling curve exhibits a sharp

discontinuity in Cp due to supercooling.

On the heating run such is not the case
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and there are no infinities associated with the heating curve. Broadening of the peak is considered to

be due to inhomogeneity in the sample used.

(4) Order-disorder transition in Ni-Mn alloys

According to Collins and Teh,12) the rate of disordering of a Ni-Mn alloy shows a "critical slow­

ing down", as if the transition were of higher order than 1st-order.

(5) Intermetallic compound CU3Au

Hashimoto et al. investigated the transitional process in the CU3 Au alloy from the disordered to

the ordered state and the relaxation process in the phase change by measuring the time dependence of

the X-ray superstructure linewidth and the electrical resistivity.4) The first kind phase transition of

CU3 Au occurs at Tt = 664.2K. In their experiments, the samples were quenched from the disordered

state to the ordered state very near the phase transition point. Figure 4 shows the relaxation times,

TD+O for disorder-order transition and TO +D

for the reverse, as a function of temperature.

The relaxation time becomes longer as the

temperature approaches the phase transition

temperature of the 1st-order Tt , and this is

considered to be a sort of critical slowing

seem to be the first to show one of the

typical examples of transient phenomena.

Furthermore, they found that the average

cluster size increases in proportion to the

square root of the aging time t, in good

agreement with theoretical predictions by

Kawasaki et al. 13) which are based on the

(M.-Il

Their experimentsdown phenomena.

Fig. 4 The temperature dependences of the re­
laxation time 7D-0 and TO-D, TD_oand TO-D are
shown by the open and the closed circles, respec­
tively.

(6) Pseudo-spinodal in phase separation of

binary mixture

As studied by Chu et al.,14) the concentration of one component is taken as the conserved

TDGL model.

order parameter. In Fig. 5 are shown the inverse intensity for light scattering leo and the diffusion

coefficient a of isobutyric acid/water mixtures as a function of temperature. By extrapolation of

these data to zero scattering angle and then to unrealized states below the phase separation temper­

ature, they obtained a common "pseudo-spinodal curve".
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Fig. 5 The temperature dependences of the inverse intensity for light scattering leo

and the diffusion coefficient a of isobutyric acid/water mixtures, after Chu et al. (ref.
14).

III. IKEDA'S CLASSIFICATION OF pcp

As mentioned in the introduction, Ikeda has developed a molecular field approach to PCP.

His theory is based on earlier works such as Landau's phenomenological theory of phase transitions,

extension of "cluster model" developed by Fisher and Domb, and series expansion method (Pada

approximation). Thus he obtained "pseudo-critical exponents" and "pseudo-scaling relations" and

further discussed "linear and nonlinear relaxations". Now according to the Ikeda theory, the PCP

can be classified into two main systems, as shown in Table I: (a) the conserved order parameter

system and (b) the non-conserved order parameter system. The latter is associated with the lst­

order phase transition and can be further divided into (b-l) disordered phase and (b-2) ordered

Table 1. Ikeda's classification of PCP.

(a) Conserved op

Examples

'

pseUdO-SPinOdal in
••.•.••••••••••••••. phase separation of

binary mixture

(

Liquid crystals

phase Aqueous solution

Metastability limit
of supercooling

{

Binary alloy

Ferroelectrics

Metal-nonmetal trans-
ition

Binary fluids

(b-ll

{

Disordered

OP

(b-2l
Ordered phase

(b) Nonconserved

PCP

OP: Order parameter.
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phase. Some of the experimentally observed examples for each case are also shown in Table I.

The characteristic differences between usual critical phenomena and PCP are summarized in

Table II. Usual order parameters correspond to the pseudo-order parameters. The corresponding

pseudo-scaling relations are obtained quite similar to the usual scaling relations. Furthermore, ad­

ditional relations are predicted to exist, such as

as=rs , rs+fts= 1, f3sos = 1,

and the values of pseudo-critical exponents are also derived.

Table II. Characteristic differences between usual

critical phenomena and pseudo-critical phenomena by

the Ikeda theories.

Usual critical phenomena Pseudo-critical phenomena

Order parameter Pseudo-order parameter

Scaling relation Pseudo-scalingrelarion

0- + 26 + y

dv = 2 - 0-

2

dv
s

2

2 - 0­
S

6 = 1, 6 0 = 1s s s

Critical exponents

0.=0.'=0

6=1/2

y=y'=l

0=3

Pseudo-critical exponents

o.s=1/ 2

6s =1/2

Ys=1/2

o =2s

The Ikeda theory on PCP has been constructed within the framework of molecular field theory

and to some extent successfully applied to various systems. However, we should note the followings:

For the studies of dynamic critical phenomena it is important to establish relations between singular

transport coefficients or relaxation times and the singularities of static properties. Although mean

field theories and related "conventional theories of critical slowing down" are not very satisfactory

near the critical point, more successful treatments have been based on, such as hydrodynamic ap­

proaches and scaling arguments, mode-mode coupling approximations, and renormalization group

expansions. By taking account of these aspects, more generalized and unified theories will be re­

quired.

Moreover, PCP are considered to have a close relationship with other fields of physics, including

problems of nonlinear and non-equilibrium open systems which have been developed along with the

studies of critical dynamics. Basing on these points, we have tried to classify the field of general

critical phenomena.
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Fig. 6. Three circle model representing
schematically a whole set of general
critical phenomena, including non­
linear nonequilibrium open systems.
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IV. THREE CIRCLE MODEL

Our classification is shown schematically in Fig. 6, which we tentatively call "three circle

model". The region I of critical phenomena means a whole set of usual critical phenomena at ther­

mo-dynamic equilibrium state. The region II of PCP means the phenomena which show the 2nd­

order like 1st-order phase transition and includes the stability limit at metastable state. The region

III is the nonequilibrium phase transition phenomena, or nonlinear, nonequilibrium open systems.

The overlapping or crossover regions A, B, C, and D are described as follows:

The overlapping region (A) is the phenomena

which occur at metastable state of nearly homogeneous

systems and at very close to thermal equilibrium state.

In this case, anomalies in various transport coefficients

associated with the 1st-order phase transition are

observed. Typical examples are liquid crystals and

binary mixtures. The region (B) is found in non­

equilibrium critical phenomena. The examples of this

category are critical phenomena in the presence of

velocity fields and thermal flux under external dis­

turbances near the critical point at nonequilibrium

steady state, as theoretically predicated by Onuki and

Kawasaki. IS) Also nonequilibrium super-conductivity

of current interest may be included in this region.

The crossover region (C) includes transient phenomena which occur when a thermodynamically

stable state is changed suddenly to an unstable state. Typical phenomena are, for example, the order­

disorder phase transition of CU3 Au alloy and spinodal decomposition of binary critical fluids.

Finally, the region (D) is seen in transient phenomena which occur from the regions (A), (B), (C)

under action of external disturbances. That is, in this region, nonlinear relaxation process near an

unstable point is observed. In this sense this region is different from the region (C). For example,

the transition from region (A) to (D) is a sort of collapsing process of metastable state in solution

systems. The transition from (C) to (D) is likely to be transient phenomena of order-disorder tran­

sition observed in CU3Au. The transition from (B) to (D) is, for example, a nonlinear relaxation

process occurring from near-critical point to an unstable point, or transient phenomena which occur

from a stable point to an unstable point near "spinodal".

Based on this "three circle model", we shall explain more in detail the crossover and nonlinear
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relaxation problems which are so far studied experimentally and theoretically by many workers, and

then we shall try to correlate these studies with our model. For crossover phenomena, Ikeda theories

treat the transition from the region (I) to (A) as a static problem and from (II) to (C) as a dynamic

problem. The Onuki and Kawasaki theory of velocity field of binary mixtures is considered to

correspond to the problem of the transition from (B) to (D). Our ultrasonic studies of binary fluids

treat the phenomena from (I) to (A) and from (II) to (D). On the other hand, Tomita and Mura­

kami1 6) discussed metastability in a system with short-range forces from unified viewpoints of statics

and dynamics. Their studies correspond to the transition from (I) to (A) and from (II) to (C).

Hashimoto et al. studied CU3 Au problems which correspond to the transition from (II) to (C).

Finally, it is to be noted that the Suzuki scaling theories 17) treat globally nonlinear relaxation prob­

lems.

v. ULTRASONIC STUDIES ON PCP IN AQUEOUS SOLUTIONS OF ALCOHOLS

Finally, we shall show our studies on pseudo-critical dynamics in aqueous solutions of alphatic

alcohols using ultrasonic techniques2). Fig. 7 shows a general aspect of criticality in aqueous

solutions of aliphatic alcohols. Alcohol molecules are expressed by CnH 2n+ 1 OH (Rn-OH), where

the alcohols with n=l are metanol, n=2 ethanol, n=3 two isomers of normal- and iso-propanol, and

n=4 four isomers of ter-, secondary-, iso-, and normal-butanol. Their structures are schematically

shown here. With the increase of n, the alcohol molecules becomes longer. Aqueous solutions

of these alcohols with n=l to 3 and t-BuOH are "noncritical solutions." But only three isomers of

sec-, iso-, and n-BuOH with n=4 become critical solutions. Thus with increasing n the criticality

increases. As is shown, t-BuOH has a structure with high symmetry and so it is soluble in water.

Noncritical solutions

Critica1
solutions

n=l: metanol,

n=2: ethanol,

{
n-prOpanol

n=3·. iso-propanol

n=4: t-butanol

{

sec - butano1

iso-butanol

n-butanol

I

-C-OH
c

I t
-C-C-OH

I I

I I I
-C-C-C-OH

I I I

CH 3
I

CH - C - OH
3 I

CH (hydrohobic)
3

(hydrohibic)

Fig. 7 Criticality in aqueous solutions of aliphatic alcohols
CnH 2n+10H (Rn-OH).
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In aqueous solutions of t-BuOH, the CHrchain has a hydrohibic interaction with water, while the

OH-molecule has a hydrohobic interaction.

Typical sound absorptions a./[2 vs alcohol fraction are shown in Fig. 8 18) With increasing n,

the absorption peak increases and the PSAC shifts to a lower alcohol concentration. As shown

later, the t-BuOH/water system which is a noncritical solution shows the PCP, in which a 2nd-order

like 1st-order phase transition has been observed for the first time by us.

On the other hand, usual critical mixtures possess an upper critical solution temperature (VCST)

or a lower critical solution temperature (LCST) and in some cases a closed solubility loop with both,

as shown in Fig. 9. Now it is known that a multicomponent system exhibits a multicritical state,

forming a projection surface which is made up of temperature T-pressure P-component concentration

x space; thermodynamical variables such as pressure, or chemical potential are suitably used. This

multicritical point is a thermodynamical singular point characteristic of aqueous solutions and called

the "hypercritical point" (HCP). The variable P can be replaced by adding a salt into the solution

as the third component and thus the T-P-x space becomes equivalent to the T-/l-x phase space.

Fig. 9 Schematic phase diagram in T-I1-x space of n­

BuOH/H2 0/Ca (SCN)2 system; HCP is a hypercritical
point.

o 20 40' 60 80 100

Alcohol fraction(O/o)

4

·t-BuOH

',:-- 3
UC5T

IE 1u.
t'fu

T

ClJ 2 rrPrOH(/l

1''"'- /iso-PrOH;'0
.-- I EtOH.)(

1
~ IMtOH~

--rJ.l

Fig. 8. Sound absorptions vs alcohol
fraction, after ref. 18.

The n-BuOH/water/calsium thiocyanate, Ca(SCN)2' system is one of the typical examples of such

multicomponent systems. One of the main conclusions of our work is that the hypercritical state of

this solution system is equivalent to the pseudo-critical state of the binary system of t-BuGH/ water.

Figures 10 and 11 show the results of sound absorptions for these two solution systems as a
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function of each alcohol mole fraction. In each case the absorption peak decreases with increasing

the sound frequency, from which we can obtain the relaxation curve as shown later. It should be

emphasized that the behavior of noncritical solution of t-BuOH/water system is very similar to that of

the critical solution of n-BuOH/water/Ca(SCNh system observed near the hypercritical state.

The phase diagram of n-BuOH/water/Ca(SCN)2 system was measured in the T-/1 cut plane,

where /1 is the concentration of Ca(SCN)2 in units ofwt. %. Figure 12 shows the result. The shaded

region is the critical region. Thus we have determined the hypercritical temperature THC to be

61°C and the hypercritical concentration /1HC of calcium thiocynate to be 11.93 wt. %. Sound ab­

sorption measurements were carried out along the critical line; and the results are shown in Fig. 13.

Q.!tQl <13 0.4
mol fraction

01a

Fig .11. tr/r vs ,-BuOH concentration of
t- BuO H H)O system at 20'C and at
various frequencies in MHz units:
(I) 15, (2) 25. (3) 35, (4) 45,
(5) 55, (6) 65, (7) 75, (8) 85, (9)
95, (10) IDS, (II) 115, (I2) 125,

(13) 135, (14) 165.

0.50.4o.Z 0.3
mot fraction

0.1

SOO

'!>oo

600

...
<II.. ...E <II
~ "e 1000...
~ ~

400 ........
~e- ....
e-

~oo

zoo

Fig. 10. air vs n-BuOH concentration of
the solution with !/ =9.8 wt ~~ at
T = 33.0C and at various frequencies
in M Hz units (1) 16.4, (2) 27, (3)

38, (4) 48, (5) 58, (6) 69, (7)

79. (8) 89, (9) lOt. (10) 110.

(11) 121. (12) 133.

We note the following characteristic features:

The critical amplitude and critical region of the divergence in the sound absorptions observed near

Tc are rather small and narrow compared with those found in usual critical binary mixtures. As the

system approaches the hypercritical point, this divergence decreases appreciably and almost disap­

pears and flattens out at this point. Even though the critical divergence disappears, a nonlinear

relaxation spectrum due to order-parameter fluctuations was observed in the frequency dependence
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of sound absorptions near HCr,

as will be shown later. The sound

absorption increases drastically

90 .---.---,r---,r---,---,r------r----r-~---.

80

\4

j
I

13

.u",= 11.9Jw t'l.
I

12765

'0
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...... T", =6"Ct60r- -- ------------------------
41 50f-

2 I
~40
QJ

a.

~30
~

near the 1st-order transition tem- 70

perature or the freezing point.

Such a behavior is also observed in

t-BuGH/water system which is

due to the 1st-order phase tran­

sition very similar to the 2nd-order

phase transition.

In this way we have obtain­

ed the relaxation spectra at

various temperatures for the

system with different concen­

trations, as shown in Figs. 14-16.

The first two figures are obtained

along the critical line and the last

is taken near the HCr. It is of

Fig. 12 The T-Il diagram of the n-BuOHjwaterjCa(SNCh
system. Il is the concentration of calcium thiocynate in units
of wt. %. The shaded region is the critical region.
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i
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r- 2400

8000f-

Fig. 13 Temperature dependence of
sound absorptions at 4.5 MHz for
n-BuOHjwaterjCa(SCN)2 system with
different Ca(SCNh concentrations in
units of wt. %:
(a) 6.5, (b) 9.8, (c) 10.8, and (d) 11.93.
The inset shows the extended figure
near Tc for the case of (b).
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interest to note that these curves do not fit a linear relaxation spectrum of a Debye type, but rather a

nonlinear relaxation spectrum of a critical fluctuation type.

'oooor----,----r---r-,...-.,....,.....---.---,..---------...,

'"VI..
E
u

1000.....
"0
~

)(

'".....-~

10 0 '---J--'-........-...J-I..-J..:I-=--_-'--~~__L__~-~-----l
10 1CC

F~eq'-Je .... : y (M .... z

Fig. 14. Itll' vs frequency for the sample '" ilh fl
various temperatures: Ie) T - ~.63 I C.
T -0.838 C, (0) T 3.350 C.

6.5 wt 00 and x ,,~O w t %at

(e) T-- -1.991 C, letl

E
u 1000

U.,
III

'::0.....

100

Fig. 15.
10

Frequency (MHz)

Itf"! vs frequency for the sample with !( ~9.8 wt 0 ~ and x = 15 wt o~ at

various temperatures: (et) T 4.0 C, <IA) T~ II.OT, (D) T=
17.3 C, <e) T=27A C, COl T=30.9 C.
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Now the transition at the HCP takes place from the liquid phase of the 2nd-order transition in

binary critical mixtures to the liquid phase of the 1st-order transition. Therefore, in view of the

static critical phenomena, we have attempted to apply to this system the expression of "generalized

surface critical exponent" on the semi-infinite surface, developed by Bray and Moore. 19) As a model

of phase transition, they use a Hamiltonian of the Ginzuburg-Landau-Wilson type, containing arbi­

trary quartic term (e.g., cubic or other anisotropies mayor may not be present). The effect of the

surface is modeled by the inclusion of an extra "surface" term in the Hamiltonian:

(1)

(2)

Here (h(x) is the i-the Cartesian component of the n-component order parameter. The "surface"

perturbation, which destroys the translational invariance, is restricted to the plane z=O and the

integration in eq. (1) is over all space, not just over the half space z > O. They assume that such a

model belongs to the same universality class as a semi-infinite system. The parameter g is propor­

tional to the reduction of the local mean field transition temperature in the surface plane. Then the

transition temperature Tc(g) for the formation of a surface phase is related to g by the crossover

exponent CPs through the relation

T c (g) - T c (0) ex: Ig /1/¢s
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The bulk-surface crossover exponent is 1>s = vAs = 1 - v. To extend this idea to the T-p.-x field space

of the actual system of n-BuOH/water/Ca(SCN)2' we introduce a new expression

t' =ao b with b =Ij¢, (3)

where t' = ITc(g) - THeCO) IITHeCO) and 8 = JJ1c (g)- J1HeCO) I/J1HeCO). The least square analysis of

the t' vs 0 plot yields the value b = 0.54 ± 0.02, as shown in Fig. 17. In conclusion, the HCP is the

10°r-----.,~,.-,-rrrr"TT'""-"'""T"'"-r"'T""'rnrTT1r-----r-,.,.....,..,r'TT"]

u....
o
LLI -1

~O
UJ
a::

-2
10 -a

10

Fig. 17.

10-2

REDUCED .JJ c

The reduced Tc vs reduced ,lie or the t' vs Q relation of Eq. ( 3) for the
n-BuOHH,O/CaCSCN), system. The slope 8 or b=I;~) is 0.54:::0.02.

transition point from the 2nd-order phase transition to the pseudo-critical state, and the transion

point corresponds to the crossover point from the critical line to the pseudo-critical state.

In the following we shall discuss the dynamical scaling for PCP. For our solution system the

total sound absorption W(E, w) can be expressed by three terms,

(3)

where E = ITpc - TilTpc is the reduced temperature, w the angular frequency of the sound, and

Tpc the pseudo-critical point:

W(E, w) = total sound absorption ct,

Wpc(€, w) =pseudo-critical sound absorption ctp ,

Wbg(€, w) = ~Ai(€) I [1 +tltci] , background absorption,

aCT) = classical sound absorption.

Using the extended dynamical scaling idea developed by Ferrell et al. and Halperlin and Hohenberg,20)
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we may write the pseudo-critical absorption a p in the form

a p = A WYH(W7) (4)

Though the pseudo-critical point Tpc is expected to lie below the freezing point, we assume here

T pe "-' Tfp. Then relaxation time of the order parameter fluctuations is written by

7 ,...., e- Ll , L1 = VZ,

where z is a dimensionality and L1 a pseudo-critical exponent. Then eq. (4) reduces to

1/1 pc (e, w) = a p = A WYH( we- Ll ),

(5)

(6)

with T -+ Tfp, e- L1 -+ 00, and hence the_scaling function H(we- Ll ) becomes frequency indepencent.

The pseudo-critical sound absorption ape at T fp is

(7)

Therefore the ratio of a p to ape is expressed by

(8)

In Fig. 18 we plot the reduced absorption ap/ape as a function of the reduced frequency for n­

BuOH/water/Ca(SCNh system with Ca(SCN)2 concentration }J. = 11.93 wt. %and n-BuOH concen­

tration x = 17 wt. %. It can be seen that all the experimental points lie on a single universal function

and that the interchangeability between frequency and temperature is well established.

IJ
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tOe 10;
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Fig. 18. Reduced absorption vs reduced frequency for the sample \\ith .'! -= 11.93

wI 0 ~ and x' 17 wt 0 0 at various temperatures.
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Gn the other hand, in our recent sound absorption experiments for noncritical solution of

t-BuGH/water system, we have successfully obtained the temperature dependence of absorptions at

various frequencies, as shown in Fig. 1921 ) It is worthy of note that even at the metastable state well

below the melting point or freezing point Tfp, or in the supercooled state, an anomalous enhance­

ment of the sound absorptions is observed. Furthermore, for this aqueous solution we have confirm­

ed that the dynamical scaling hypothesis for PCP is well established.

Fig. 19 Temperature dependence of
sound absorptions at various frequencies
for t-BuOH/water solution.21)

0·0' mol fraction

t., - BuOH + HaC

Fig. 20 Supercooling and super­
heating for t-BuGH/water so­
lution (see text).21)
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Finally, we show the supercooling and superheating experiments for t-BuGH/water system21 ).

Figure 20 demonstrates the temperature vs time plot for a solution with 0.09 alcohol mol fraction.

The process from A to C is a supercooling curve, while after about 1 minute the system undergoes a

superheating from C to D.

In summary, we have clarify the properties of PCP, including dynamical scaling hypothesis.

But the discussions given above are rather qualitative. Further theoretical and experimental studies
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on PCP will be required, such as the establishment of new scaling argument and universality class for

PCP.
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