<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>遷移金属ニカルコゲン化合物の層間挿入化合物の諸性質についてインターカレーションの機構と物性(第1回)科研費研究会報告</td>
</tr>
<tr>
<td>Author(s)</td>
<td>神崎 慷·松本 修</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 14回国際ガス学会シンポジウム</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-12-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/90405</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
1. 原論 　Rüdorff や Geballe によって展開された層状遷移金属ニルコプシン化物の層間挿入反応が、すでに著者らが指摘したように、この反応が層状化合物の応用において重要な役割を果たしている。特に Geballe による研究は、この反応の多様性を示したものであり注目すべきものである。この反応は、まず遷移金属イオンを層状化合物の層間挿入に用いることで、新たな化合物の形成を可能にしている。この挿入反応は、アルカリ金属の層状化合物の挿入反応と異なり、アルカリ金属含有化合物の挿入反応を主体にしている。これにより、我々の発表を呈示した研究は、さらにこの反応の可能性を示唆している。

我々の研究では、層状化合物のアルカリ金属含有化合物の挿入反応について検討を加え、層状化合物の挿入反応の挿入反応を示す。これにより、層状化合物の挿入反応の挿入反応がアルカリ金属含有化合物の挿入反応を示すと考えられる。この挿入反応は、アルカリ金属含有化合物の挿入反応の挿入反応に大きな影響を及ぼす。この挿入反応は、アルカリ金属含有化合物の挿入反応において、層状化合物の挿入反応の挿入反応がアルカリ金属含有化合物の挿入反応を示すと考えられる。これにより、我々の発表を呈示した研究は、さらにこの反応の可能性を示唆している。
図2のように同定によつてもこの事実は確証されている。ところがここに二つの疑問点が生じた。一つは2層構造を取ると仮定した場合層間の近似が分子の Von der Waals 半径から計算したものよりも明らかに大きい。二番目としてアルカリ金属にオーバーイオン半径の大きさ球形近似ができない、さらに水素の影響を無視できる水酸化物トラアルカリ金属の挿入化合物においてもこの階層状の延長が見られることである。特に後者は決定的である。このため我々は、これまで報告されている球形球状構造を取った挿入化合物土耳其化合物について、それらの面間隔の延長について論証的に検討を加えた。図2に示したものがこの結果である。

この面間隔の延長と挿入される物質の大きさとの関係をコンピュータに与える関係に示しているが、我々の得た結論は結晶学的な安定性と挿入物質の自由な挙動を説明するものに適当である。

3. 揿入化合物の超伝導臨界温度について

挿入化合物がアルカリ化合物を自身の超伝導性を示すものは数々ないが挿入化合物を含めることで今まで多くの物質が報告されている。我々はこれまで 2H-TaS₂, 2H-NbS₂, 2H-NbSe₂, 2H-MoS₂, 1T-Sb₃, 1T-TeS₂ などのアルカリ金属およびアルカリ金属水酸化物の挿入化合物について超伝導転移温度の測定を行ってきた。アルカリ金属挿入化合物がリン酸ゲルマニウムリドリウムアミド (HMPA) にアルカリ金属を溶解したいわゆる溶媒和態の生成を知るために合成した。水酸化物挿入化合物は水酸化物の水溶液にアルカリ金属の電解液を処理することにより合成した。超伝導転移温度は 100K で自己インダクタンス法により測定した。図3にその測定結果の一例を示す。アルカリ金属挿入化合物でチオアリカリ金属から溶子への電荷移動があり、水酸化物でないとされるので同じ図を比べると意味のないことを知るべきだが、2H-TaS₂ の場合 TaS₂金属の象子半径が大きくなるために高

図3. 各種挿入化合物の超伝導転移温度
白抜き: 水酸化物 黒抜き: アルカリ金属

87
くなり、これは2H-NbS₂の場合も同じである。一方2H-NbS₂の場合との逆の傾向にある。

2H-NbS₂の場合と金属互化物自身ではTcが高いため(7.3K)にもかかわらず、アルカリ金属が挿入されるとき超伝導状態への移行を観測することはできなかった。一方金属互化物挿入化合物のうち移行程度が観測されたものは2H-TaSe₂、2H-NbS₂のみであり、他はその程度は観測されなかった。図2で非常に興味あることは、いくつかの例はあるとして、も一般的傾向として層間の移行が大きかっときは2H-NbS₂においてはTcが次第に高くなったが、2H-TaSe₂では逆に低下する傾向にあることである。金属互化物挿入化合物では挿入物質から格子への電子移動はほとんどないと考えられるのでこの傾向は層間での電子間の相互作用を無視した場合の理論の二次元金属としての性質を示していると考えることもできるであろう。

上記の超伝導性についての研究ではまだ解決のつかない重大な欠点が含まれている。

4. 磁気共鳴法によるアルカリ金属挿入化合物の研究

アルカリ金属挿入化合物中のアルカリ金属原子(イオン)から格子への電子移動を調べるとき、磁気共鳴法が最も直接的でありかつ信頼性も高い。しかしながら、これまで磁気共鳴による研究はあまり報告されていない。金属互化物のうち金属互化物のうち金属および金属の大部分半導体の比較的結晶状体であり、金属互化物挿入化合物における格子を観測することもできることができるが期待される。図4に17Zr-2およびカリウム塩の測定結果を示す。92つ付近のひがしは吸収はアルカリ金属原子に局在した電子Kよくものであり、鉱石中の大きな吸収は格子の伝導バンド(4d₂)への移動した電子によると考えられる。前者は17Zr-2カリウム塩において非常に明確で、後者4d₂というナノクロス核による超伝導構造が観測されたことがわかる。このESRおよびNMRのKnight Shiftの測定から挿入されアルカリ金属は97%以上イオン化しているとも思われる。この事から格子上の寿命が比較的長いことから試料の超伝導性の測定結果をより正確に測定の異方性を説明する上で重要なファクターとして考えられる。

図4 17Zr-S₂-カリウムのESRスペクトル