<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>題名</td>
<td>グラファイト層間化合物の分解過程 インターカレーションの機構と物性 第1回 科研費研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>大橋 憲太郎</td>
</tr>
<tr>
<td>応用</td>
<td>物性研究</td>
</tr>
<tr>
<td>部門</td>
<td>物性研究</td>
</tr>
<tr>
<td>日時</td>
<td>1981-12-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/90428</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
FeCl₃-クラフサイト層間化合物の分解過程

早川恒大
大橋富太郎

はじめに
FeCl₃をクラフサイトと反応させて組成を層間化合物とする方法について述べる。E₂₀₀の結晶層のEH₃モード振動数のステージ依存性を明確にしている。一方これらの化合物に対するX線回折分析は、いくつかのFeCl₃含有量（ここではFeCl₃-xなど含む）を持つことを示し、FeCl₃-クラフサイト層間化合物（FeCl₃-G）もFeCl₃-Gの分解生成物として存在することが知られている。FeCl₃-Gは、インターサーラメントはハルクFeCl₃がもつ層構造を一定程度保持し、塩素の二重層の下面まで入るとイオンがさらに入るかな三层構造を形成している。これによりFeCl₃-Gにおいて、イオンの移動およびそれに伴うFeCl₃のVacancy生成、再結合していないフリーフローライトの形成が必要と考えられる。インターサーラメントが外部へ放出される場合ステージ変化を伴うことが予想される。この結果からクラフサイトと反応させた層間化合物をさらに同条件（乾燥N₂気流中375℃, 4時間保冷）で再熱処理することにより、分解過程のステージ変化を常温のラマン分光で、FeCl₃含有量の増大を常温のX線回折で測定し、その構造変化を説明する構造モデルを提案する。

実験

ポストとAHPがクラフサイトを用いた。和算中にFe₃₀₃(クラフサイト成)Fe₃₀₃(FeCl₃成)を保持する高密度で合成(粉末X線)および生成物を化学分析を用いて組成を対比する。この組成作成にあたってFeCl₃-9 wt%を基準とした。

ラマン分光測定は応力管中の試料で514.5Åのレーザー光を用い、入射ビームはC面と45°の角度で試料をC面に垂直に方向を制御した。

メスバウァー分光は鋼内で200℃で熱処理し、X線はC面に垂直に入射させ、スパイラルの温度軸を用いた。結果は塩素を基準にした。結果は硫酸を用いてスパイラル・レシーグ・層で測定した。

実験結果

1)メスバウァー分光

説明のためクラフサイト-FeCl₃の2NHCl洗浄試料（53 wt%）および分解生成物（
表2 300 KでのFeCl$_2$-Feに対する2つのスペクトルの比較

<table>
<thead>
<tr>
<th>Fe$^{3+}$ (δ%)</th>
<th>QS (mm/s)</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{3+}$</td>
<td>0.48</td>
<td>—</td>
</tr>
<tr>
<td>Fe$^{2+}$-1</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Fe$^{2+}$-2</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Fe$^{2+}$-3</td>
<td>1.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Fe$^{2+}$-2サイトはカラムを proposéにした時のように表面物質と考えられる。ここではインバーソレートされたFe$^{2+}$-2サイトの見つけるために、37°Cを設定するとときFe$^{3+}$およびFe$^{2+}$-2サイトの面積比を当然の面積比から見違えた。

2) ラマン分光

図2にHOPGことわざ材料IとIIの分解されたスペクトルのスペクトルを示す。またカラムをFeCl$_2$-Feのスペクトルを図3に示す。分解されたIIにおいてステージ1と2の割合の変化、あるいは（E→I）と呼ばれるステージの出現が見出された。スペクトル解析によるステージの出現は予想通りであるが、定性的にまとめを表3に示す。ステージの出現は出発試料における3000℃における面積比が約0.7±0.2%に考えられる。

表3 ステージの

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Percentage of stages</th>
<th>γ-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 (%)</td>
<td>Stage 2 (%)</td>
<td>Stage 3 (%)</td>
</tr>
<tr>
<td>I</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td><0.05</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

さらに図1の洗浄試料に対するラマン分光、ステージ2,3,およびカラムをproposeした2ポロールの洗浄によりバンドで洗浄効果は表面でのインバーソレートの廃出を意味する。
i Discussion

1) ステレオ変化

n=2またはn=3の推移について考える。層内の反応がすべて2とされているが、使う方空間であるという、フレジーサイド・モデルでは、酸化インテラレントの再挿入が考えられる。修正ステレオモデルでは再挿入を必要としない。この結果は酸化インテラレントを保存せずなく、早くされているので再挿入は可能ではない。図5にステレオ変化モデルを示す。

2) インテラレント層の面内構造変化

図5に示すように、反イオンの移動がFe(II)
からFe(III)へと移動を考える。この結果は、Fe(II)はすでにハブクラ層内格子の2次にわたってサイト
Fe(III)は一時的に、ラジカルの面内格子2次にとり、な
り変化したサイトと考えられ、GSの大きさを示す。このモデルではFe(II)とFe(III)は不均一分布すること
を前提としている。図5で示すようなVACANCYの形成や
トラップされたフリーオーブの存在は、電子の移動に大
きく寄与し、Fe(III)への還元特性を観察し得る。

文献