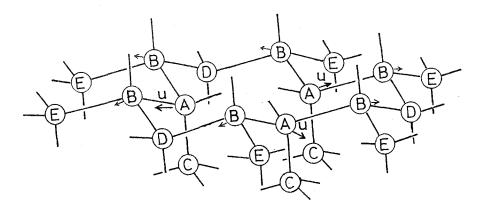
S:(111) 7×7再構成表面の原子構造 分子研 星野敏春, 塚田捷


- 1) 反射高速電子回折(RHEED) ; Si(111) ワ×ワ 表面には2 a (aはSiの下地の単位胞の一辺) の大きさで正三角形状に何らか の異常散乱体が存在し、これがワ×ワの周期で配列している。
- 3) He原子散乱 (He atom acattering ~.063eV); 麦面には振巾~3a.u.,周期~80a.u.もある大きな電荷のしわがあることを観測している。
- 4) イオン散乱 (Jon (Het a.15~1.0 MeV) Acattering) (6); 表面に 垂直な大きい原子歪 (~.8a.u.)が生じている。 その詳細につい てはまだわからない。
- 5) Sicm)リメワ/H糸での任速電子回折(LEED); Si(III)/H でのLEEDパターンは清浄表面のものより比較的単純になり, その解析より単位胞は大きく2種類の区域に解れる。

以上の実験結果を説明するためにいくつかの模型が提唱された。Yndurain (8)はワメワ構造の単位胞は raised 原子の集団と lowered 原子の集団から成る模型を提唱した。 この模型はHe 原子散乱(実験3), イオン散乱(実験4) および Si (111) ワ×ワノ州でのLEED解析(実験5) を説明するが、RHEED(実験1)と REM(実験2)に 干盾する。 一方、Phillips(9)は単位胞の約半分の表面原子がめけている模型を提唱した。 この模型はいるいるな実験事実(2~5)と合うが、RHEED(実験1)とは予盾する。

牧々はDV-Xu りラスター法を用いて清浄および吸着子のある場合に表面空格子と電子状態の関係を調べ、空格子模型はいるいるな系

$$V_{ab} + V_{ba} = (2V_{3535} + (\sqrt{X_1} + \sqrt{X_2})(V_{353por} + V_{3por35}) + 2\sqrt{X_1X_2} V_{3por3por}) / (1 + (\sqrt{X_1})(1 + \sqrt{X_2})$$

fig. 1a The surface cluster including a single vacancy. The displacement u determines the positions of surface atoms. The surface atoms move along the arrows.

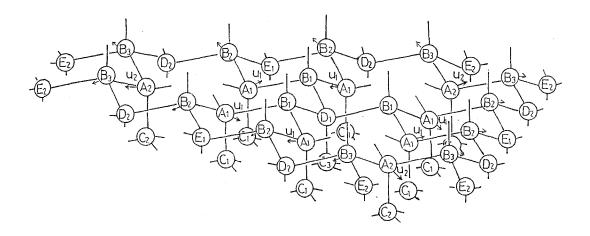
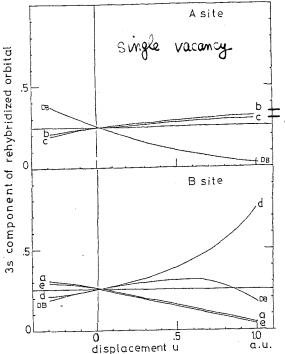


fig. $1_{\rm D}$ The surface cluster including three vacancies. The displacements $\rm u_1$ and $\rm u_2$ determine the positions of surface atoms. The surface atoms move along the arrows.

i,j=nearest neighbor(bulk distance)

Table I. Potential matrix $V_{\underline{1}}^{\underline{1}}, \underline{\underline{m}}$ and overlap integrals $S_{\underline{1}}^{\underline{1}}, \underline{\underline{m}}$ between Si otoms.


valence-valence

3s-3s	-1.70	.27	
3s-3po	-4.20	.41	
3po-3s	-1.04	.41	
3po-3po	-1.72	.33	
3рπ-3рπ	-1.19	.27	
Bonding interaction	V _{ab} ∓V _{ba} ,(d = 1	$x_{2} = \frac{1}{1 + 1} = \frac{1}{1$	
-7.5	2 2.5	X ₁ 3	

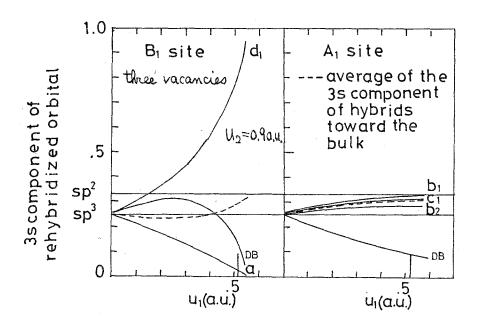
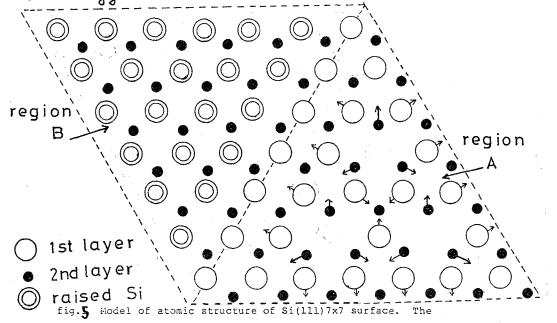
fig. 2
The interaction of bonding
Vab + Vba
between
two opposite
hybrids a
and b
depending
on the
rehybridization

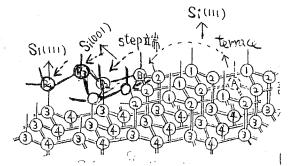
図2はVab + Vba のX1, X2依然性を示している。 X1= X2=3 (a=sp³, b=sp³) の場合 -7.96 eV であるが、X1= X2=2 (a=sp³, b=sp³) の場合 -8.36 eV となる。 ポンドはS成分が増えるほど強くなる。 表面においてはダングリングボンド(DB) はボンドを作らないが、バックボンド(BB)のみがボンドを作ってエネルギーをがせげる。 そのことから考える原子は再構成すると、表面原子の場合にはA原子でBBを作る温成軌道にS成分が増えるにはA原子でBBを作る温成軌道にスが、B原子ではている場合になるにはSp³軌道は平均的にSp³軌道はない(fig.3)。一方、3個の空格子が正三角形状にある場合になる、そのまずりのようにギーが得も大きり。 以上により、3個の空格子は正三角形状に並びたがると思える。 そのまずりのようにギーが得も大きり。

図3,4で DB のほとんどがP軌道的(-5.6eV)になっているのに気づく。 それ故,もレリメリ構造で単位胞の区域Aがこの3個の空格子から作られていると考えると、残りの区域Bに電荷物動が住じ

最近のめざましい鬼験技術の SP 発展から考えて、もっと正確で詳 細な結果が近い将来に期待でき ると思える。

fig. 3 The 3s components of rehybridized orbitals on surface atoms depneding only on the positions of surface atoms. The vertical lines indicate the value of u which determine the surface structure of total energy minimum.


fig.4 The same quantities shown in fig.3. The parameters $u_1 = .52a.u.$ and $u_2 = .9a.u.$ determine the surface structure of total energy minimum.

region A contains only three vacancies and the atoms on the region displace along the arrows. The atoms on the region B are raised from the ideal positions. Some atoms may remain at the ideal positions.

References

- 1) R.E. Sollier and H.E. Farnsworth, J. Chem. Phys 30 (1959) 917.
- 2) W. Mönch, Surf. Sci. 86 (1979) 672.
- 3) S. Ino, Jpn. J. Appl. Phys. 19 (1980) 1277.
- 4) N. Osakabe, Y. Tanishiro, K. Yagi and G. Honjo, Surf. Sci. 109 (1981) 353.
- 5) M. J. Cardillo, Phys. Rev. B 23 (1981) 4279.
- 6) R. J. Cuberston, L. C. Feldman and P.J. Silverman, Phys. Rev. Lett. 45(1980) 2043.
- 7) E. G. McRae and C. W. Caldwell, Phys. Rev. Lett. 46 (1981) 925.
- 8) F. Yndurain, Solid. State Commun. 39 (1981) 925.
- 4) J. C. Phillips, Phys. Rev. Lett. 45 (1980) 905.
- 10) K. Nakamura, T. Hoshino, M. Tsukada, S. Ohnishi and S. Sugano, J. Phys. C 14 (1981) 2165; M. Tsukada and T. Hoshino, to be published in Interm. J. Quantum. Clem; T. Hoshino and M. Tsukada, to be published in Surt. Sci..
- 11) K. Suzuki and T. Hoshino, J. Phys. Soc. Jpn. 49 (1980) 1055.
- 12) 空格子の形成エネルギー(損失)2日の寄与は無視している。 以前(1981,日本物理学会,2a,NM6), もrrace (DB1個) からなp (DB2個)に原子が移動することにより空格子が

図モ 空格子形成形機構の1個

terrace上の原子(A)からでp端(P) F級動。 さらに、B1、B3 ~ ビ級動している。