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Satistical Dynamics of Interface
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I. Introduction

An interface between two coexisting phases can be regarded as a simplest example of to-
pological excitations, other familiar examples being vortex lines in fluids, dislocations and
disclinations in crystals etc.!) Such topological excitations appear as singular solutions of the
equations of motion or the equations for equilibrium states of nonlinear continuum model
systems in the limit of strong nonlinearity. Such topological excitations are very important
in the fully developed hydrodynamic turbulence as well as in the late stages of phase transition
kinetics where nonlinearity of the problem plays a crucial role. Here a simple stochastic model
called the kinetic drumhead model is presented?-5) which describes random motions of an

interface together with its applications.

II. Derivation of the model
We start from the well-known time-dependent Ginzburg-Landau model3) which is ex-
pressed in the form of a nonlinear Langevin equation for the non-conserved local order para-

meter S(x, t) as

%s(:c, 8 ==L A{PP=)S+L8%) + ¢ ) 1)

where { is an appropriate random force representing a thermal noise. Singular solutions are
obtained in the limit of strong nonlinearity g — oo, which in turn requires 7 = = in order to keep
the equilibrium value of the order parameter finite®); Seq == [67/¢1"?. The resulting
stochastic equation for the position of the interface z =f{(r, t) with x = (z,r) can be expressed

again as a nonlinear Langevin equation as follows:
%f(r, t) =1+ (8,1 [LK+(] 2)
where K=46,-10, A1+ (o, f)z) is the mean curvature of the interface and {; is the random

force. Detailed discussions about the derivation and the properties such as the Euclidean
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invariance of (2) can be found in Refs 2 and 5.

III. Applications

A. Critical dynamics

The model (2) allows an expansion in (d—1) of the dynamic critical exponent z(d) in the
vicinity of d = 1 where d is the spatial dimensionality of the hulk system. Such an expansion
was recently obtained by Bausch et al. See Ref. 5, for further details.

B. Kinetics of phase transitions

Here we are interested in the whole process of approach to equilibrium when thé system
is suddenly quenched from a high temperature disordered equilibrium state to an unstable
low temperature state accompanyed by enomous supra-thermal ﬂuctuation.3’6) One of
the fundamental problems here is the understanding of the newly discovered scaling low where
the normalized variance of the Fourier components of the local under parameter fluctuations
exhibit a scaling behavior k(£) *F(g/k(f)) where k()" is the varying length scale characterizing
the spatial pattern of fluctuations after a certain transient period.6) Earlier theoretical at-
tempts at this problem based or decoupling ideas8) or singular perturbation theory3-9) met
only partial success in coping with strong nonlinearity. The appronch which starts from (2)
hence complements the earlier theories. We report here only some preliminary results obtained
so far. First, the scaling behavior can be understood rather easily. We first rewrite (2) in the
form of a Fokker-Planck type equation for the probability distribution functional for the
position of interface P({f}, ). We then seek a scaling type solutionpP( {f},t):f?({qs})where
o) = k(t) f (r, 1) with y =k ()r. We then find that itk(r)/k(r)® is a negative constant (which
we take to be -L by an appropriate choice of unit of time), the Fokker-Planck equation allows
a scaling solution where the. term coming from the random noise term of (2) drops out. Hence
k() = (2LH)1/2 for sufficiently long times. The scale-invariant functional now satisfies the

condition

. a . .
'fdya ¢+y V¢
a

FANIVAN
— +KIP({¢})=0 (3)
] v
N . . 2

where K= o[ p¢fa] is the scaled mean curvature with F= 9/6 y and a=+/1+(fi¢)- The first
and second terms of (3) represent spurious and real displacements of interface ¢(y), respective-
ly, where the former is caused by the scale change k(¢) and the latter by the curvature. Thus
the condition (3) shows that these two displacements compensate in maintaining a steady

A .
state distributionP {¢} in an expanding universe. Here it is interesting to note an analogy
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between the present problem (with the direction of time reversed) and the three-dimensional
strong Navier-Stokes turbulence. Both are governéd by deterministic nonlinear equations of
motion which are expected to show chaotic behaviors. Singular solutions of there equations
are important in the limit of high Reynolds number or strong nonlinearity. Such singular
solutions are not yet fully understood in the case of Navier-Stokes turbulence (vortex lines,
vortex sheets, etc.)!®) whereas they are well-known in the form of interface in our case.
“Topological excitations’ (singular solutions) in both problems are expected to show stretch-
ing and folding behaviors that characterize a turbulent motion:11) Hence the study of phase
transition kinetics should be useful to elucidate some aspects of the Navier-stokes turbulence.
We have also found a constant of the motion fdya (the total area of interface) under some
assumption where the integral is over the entire invariant space but is not over a space of y
which shrinks with the changing length scale. However this appears to be not quite sufficient
to obtain an explicit form for the invariant distribution ?’ in analogy with the equilibrium dis-
tribution which is a function of constants of the motion such as the Hamiltonian. This is due
to the fact that the time variations of ¢ is not meaéure-preserving. It may be neccessary to re-
consider the stationarity condition in the expanding universe more carefully by taking note of
the actual volume change of the system and the concomitant change in the function space of
f and/or ¢ which are required to ensure the stationarity. Here the problem has some formal
similarity to obtaining the fixed point Hamiltonian in critical phenomena. The problem is now
under active investigation and the results will be reported elsewhere.

- Finally we exhibit formula that connects the experimentally accessible equal-time pair

correlation of the Fourier component of the order parameter fluctuation G(g) to fAr):

G(g) = (218, )? ¢ 2 [ 14 (g, /g, ) )V SSdrydry e re" (7

K <ET cgepe LA "

where ¢ n and g, are the components of the vector ¢ parallel and perpendicular to the r-plane,
respectively. Here we have generalized the model so that there can be more than one interfaces
which are designated by a and f. € is the polarity of the interface & which is +1 or —1 accord-
ing to the sign of § above the interface. _ _

Note that possible multivaluedness of the function f{r) can be handled by introducting
interfaces with different polarities as is shown in the figure where of course interfaces of

opposite polarities cancel whenever they touch each other.
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