<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Sine-Gordon modelとMassive Thirring model(物性におけるソリトンの統計力学とダイナミックス,科研費研究会報告)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>高田 慧</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1982), 38(1): A31-A36</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1982-04-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/90539</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Publisher: Kyoto University
Sine-Gordon model & Massive Thirring model

第1章 理論と実験

実現元は Sine-Gordon model (SGM) はソリトン解を有する最も簡単な量子系として研究されている。この理論は主に物理学会で研究されており、量子論の理論の発展をめざす。

図 1

場の理論と固体物理学の相関

- 場の理論の発展は、特に量子力学において重要な役割を果たしています。特に強力相互作用系を扱う時、場の理論が役立つことが多くあります。
- 場の理論においては、場の変化が系の状態を決定するという点が重要です。これはさらに、系の量子化された場の変化が系の状態を決定するという点が重要です。
- 場の理論は、量子力学において重要な役割を果たしています。特に強力相互作用系を扱う時、場の理論が役立つことが多くあります。

2 Fermi - Bose 各系

Fermion の波動方程式は、次のように書く。

\[\psi_n(x) = \frac{1}{\sqrt{2\pi \hbar}} e^{i \phi_n(x)} \]

ここで、\(\psi_n(x) \) は Fermion の波動関数、\(\phi_n(x) \) は Fermion の相関関数、\(\hbar \) はプランクの常数で、\(i \) は虚数単位です。

これらの方程式は、Fermion の運動方程式を含む基本方程式である。この方程式は、Fermion の運動方程式を含む基本方程式である。

\[\psi_n(x) \psi_n^*(x') = \frac{\delta(x-x')}{(2\pi \hbar)^2} \]

\[\psi_n^*(x) \psi_n(x) = \frac{\delta(x-x')}{(2\pi \hbar)^2} \]

ここで、\(\psi_n(x) \) は Fermion の波動関数、\(\psi_n^*(x) \) は Fermion の波動関数の共役です。
ここでは、Bose-CondensationのN模を表すとおり

\[\psi_n^*(x) \psi_n(x) = \frac{1}{2\pi \alpha} e^{i G_n(x, x')} e^{-G_n(x, x')}, \]
\[G_n(x, x') = \sum_{k=0}^{\infty} \frac{2\pi \alpha}{V \lambda_k} \int d1 k (e^{i k x} - e^{-i k x'}) e^{-\beta k^2}, (G_n(x, x') \text{ 同様}) \]

と書ける。式(2-2)、式(2-3)より入射角関係に \(\psi_n(x) \), \(\psi_n(x') = \delta(x-x') \) を導き出す。式(2-2)に導み出るように、\(\psi_n(x) \psi_n(x') \) のような同じ空間変数を持つ波関数は、積極によってのみ定義される。したがって、ポアノン取扱いによりここでは次のように定義する。

\[\psi_n^*(x) \psi_n(x) = \frac{1}{2} \lim_{x \to x'} \left((\psi_n(x) \psi_n(x') - \psi_n(x') \psi_n(x)) \right) \]
\[\eta(x) \eta(x') = \delta(x-x') \quad \text{無限小} \]

\[\psi(x) \psi(x') = \frac{1}{\sqrt{2 \pi \alpha}} \sum_{k=0}^{\infty} \phi_k(x) \phi_k(x') e^{-\beta k^2} (2-5) \]

この等式最後の方に表われた \(\phi_k(x) \) は密度波関数である。上式は \(k = 0 \) を含まない

では \(\psi_n(x) \psi_n(x') \) のN模を示すとおり、式(2-5)の最後の二項を比較すると

\[\phi_k(x) = \sqrt{2 \pi \alpha} \phi_k(x') \]

で \(k = 0 \) から定義されるN模に同様に問題を解くことができる。実際にN模は、全Hilbert空間全体 \(\mathcal{H} \) に定義され、量 \(x \to x' \) で一般化される

が \(\omega \) である。全Hilbert空間 \(\mathcal{H} \) は波関数に取り扱うべき変数を

とる波関数である。例えば、実数の物理量の波関数を、量子力学の実験

に用いられている。したがって、ポアノン取扱いにより不正確な実験

に至ることもある。これらを量子Wilson modelに扱うと解釈することは

できる。

これのように考えると、Bose-Condensation関係は、弱い相互作用の場合で、少ない

波を期待した場合、波を期待した場合に対して、良い近似であることが解釈される。実際にが重要

である。したがって、

\[\int \left(\psi_n(x) \psi_n(x') - \psi_n(x') \psi_n(x) \right) dx = \frac{1}{2} \int \left(\Pi^2(x) + \gamma \psi_n^2(x) \right) dx \]
\[\psi_n^2(x) \psi_n(x') + \psi_n(x') \psi_n(x) = \frac{1}{\alpha} \coth \frac{3}{2} \sqrt{\gamma} \psi_n(x) \]

と \(\psi = 1/(2\alpha) \left(\psi_n^2(x) - \psi_n(x) \right) \) を微小な変数とするが、実験的に \(\psi_n(x) \) が

できない \(\psi \) を表す。\(\psi_n(x) \) が微小変数である。(2-6)式を用いる文献Gaudin model

(3-1)より、Scale変数と含め通常変数によりMasse-Thirring model(4-1)に変換するこ

とができない。
§3 Sine-Gordon model は、秩序の不安定性を Kosterlitz-Thouless 相移
$\Delta H = \frac{1}{2} \int \left(\pi^2 \phi^2 + \frac{\lambda^2}{\phi^2} - \frac{2m^2}{\phi^2} \cos \phi \right) d^3r \tag{3-1}$

§3-1 不安定性

A) Coleman の不安定性 2) Coleman は $\phi^2 \gg \Theta^2$ で「不安定な相」であることを示した。1) $m > 0$ の場合

\[E(\phi) = \langle m \phi H_\phi \phi \rangle = \frac{\lambda}{4\pi} \phi^2 + \frac{m^2}{\phi^2} - \frac{2m^2}{\phi^2} \cos \phi \]

\[= \frac{\lambda}{4\pi} \phi^2 + \frac{m^2}{\phi^2} - \frac{2m^2}{\phi^2} \left(\frac{m}{\phi} \right)^2 \tag{3-2} \]

\[\frac{m}{m_0} = \left(\frac{m_0}{2\Lambda} \right)^{\frac{q}{2} + \frac{2}{q}} \tag{3-3} \]

でおり、図 2 に示すように $\phi^2 \gg \Theta^2$ で

$m = 0$ となる。この $m = 0$ の状態を「安定状態」と呼ぶことができる。Coleman の不安定性と

同様に $\Lambda \to 0$ の場合を考えると問題がある。$T = 0$ の場合を考え、Coleman の不安定性はこの系の不

安定性の中に存在することを示す。これにより、Coleman の不安定性と Kosterlitz-Thouless 相

が一致する。

現象的立場から、Coleman の不安定性は、Single Loop における場外発

育に関連があり、Self-consistent harmonics はこの Single Loop の心もまた

場外発育を表している。

B) Fröhlich の不安定性：Fröhlich は $\phi^2 \leq \Theta^2$ の場合に不安定性を示す。Coleman の不安定性と

同様に $\Lambda \to 0$ の場合を考えると問題がある。$T = 0$ の場合を考え、Coleman の不安定性はこの系の不

安定性の中に存在することを示す。これにより、Coleman の不安定性と Kosterlitz-Thouless 相

が一致する。

C) その他の場外発育：場外発育を示すと場外発育の場を示すために相

場の変化が生じる。これにより、場外発育は自己エネルギーの収支から場外発

育を示す。$\Lambda \to 0$ の場合を考えると問題がある。$T = 0$ の場合を考え、Coleman の不安定性はこの系の不

安定性の中に存在することを示す。これにより、Coleman の不安定性と Kosterlitz-Thouless 相

が一致する。
8.3.2 Kosterlitz-Thouless相移
Feynmannの経路積分を用いることにより、SGMの分配関数は

\[
Z = \text{Tr} e^{-\beta H_{\text{SGM}}} = \int \mathcal{D} \psi(x) e^{\beta \int dx \left(\frac{\psi(x) \psi^*(-x)}{2} - \frac{\beta^2}{4} \psi^2 - m^2 \psi^2 \right)}
\]

の形で書ける。ここで、\(\psi(x, \beta) = \gamma(x, \beta) \) である。この表現により、1次元SGMの問題は2次元古典SGMの問題の二相性を解けることを示すことができる。2次元古典SGMは2次元古典中性ボロノリ相変数gと等価であるが、

ボロノリ相変数 fugacity \(y \) と相互作用定数 \(K \) はSGMの変数と

\[
y = (m_{\text{SGM}}/g)^2, \quad K = g^2/4\pi
\]

の関係にあることが示される。\(g \) は\(g^2 \)の程度の格子相変数である。Wilsdon流の\(y \)関数群の方法と用いることにより、\(y \)の微分方程式は

\[
\frac{dy}{dK} = (2 - \pi K) y, \quad \frac{dK}{dL} = -c K^3 y^2
\]
\[E(k) = \sqrt{k^2 + M^2} \]
\[M = M_0 + \frac{V_0}{L} \sum \phi_k \phi_k^* \]

\[U_n^2 \]
\[U_n^2 = \frac{1}{2} \left(1 \pm \frac{U_0}{E(k)} \right) \]

4.1 Soliton-Antisoliton bound state (Breather mode) \(g^2 < \frac{1}{4\pi} V_0 < 0 \)

4.2 Soliton-Soliton bound state \(g^2 > \frac{1}{4\pi} V_0 < 0 \)

\[| \psi_{\text{Breather}} \rangle = \sum \phi_k \phi_k^* \]

\[| \psi_{\text{Soliton-Soliton}} \rangle = \sum \phi_k \phi_k^* \]

35
where $H(x)$ is the q-integer and x^γ is a modified q-integer.

\[
|s| < 1 \quad \Longrightarrow \quad Q(x) = \frac{1}{1 - x} \quad \text{for} \quad |s| < 1 \quad \text{and} \quad Q(x) = 1 - x \quad \text{for} \quad |s| > 1.
\]

In the case of $s = 0$, the category is reduced to the category of finite groups. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite dimensional Hopf algebras is denoted by Hopf_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

In the case of $s = 0$, the category is reduced to the category of finite groups. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite dimensional Hopf algebras is denoted by Hopf_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

In the case of $s = 0$, the category is reduced to the category of finite groups. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite dimensional Hopf algebras is denoted by Hopf_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite dimensional Hopf algebras is denoted by Hopf_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite dimensional Hopf algebras is denoted by Hopf_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite groups is denoted by Grp_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.

The category of finite dimensional Hopf algebras is denoted by Hopf_q, and the category of finite dimensional Hopf algebras is denoted by Hopf_q. The parameter q is a positive integer, and $H(x)$ is a modified q-integer.