修士論文アブストラクト (1981年度)

○北海道大学理学部物理学教室

1. プロファイルアナリシス法による強誘電体の構造解析

	$-$ BaTi O_3 \succeq Pb Z r $_{0,9}$ Ti $_{0,1}$ O_3 $-$	伊	藤		弘
2.	$\mathrm{Nb}_{1-x}\mathrm{M}_{x}\mathrm{Se}_{3}$ ($\mathrm{M}{=}$ Ta , Ti)における超伝導	Л	端	和	重
3.	$\beta-\mathrm{Na}_x\mathrm{V}_2\mathrm{O}_5$ の比熱と帯磁率	高	野	英	明
4.	3 d 遷移金属の磁性と体積弾性率	高	橋	雅	幸
5.	絶縁体スピングラス $\mathrm{Rb}_{2}\mathrm{Nn}_{1-x}\mathrm{Cr}_{x}\mathrm{Cl}_{4}$ の磁性	榆			孝
6.	The state of the s	.1.	н.	пш	<i>H</i> -
٠.	ブリルアン散乱による $\mathrm{Rb}_{2}\mathrm{Zn}\mathrm{Cl}_{4}$ の研究	Щ	Ψ'	明	土
	プリルアン散乱による Rb_2 $ZnCI_4$ の研究 混晶系 $(NH_4)_{2(1-x)}$ R_{2x} SO_4 $(R=Rb,Cs)$ の	. Щ	Ψ,	叻	生

1. プロファイル・アナリシス法による強誘電体の構造解析
--- Ba T i O₃ と Pb Zr_{0 9} T i _{0 1} O₃ ---

伊藤 弘

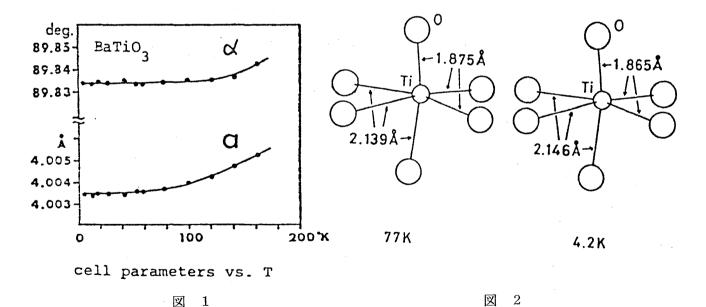
§ 1. はじめに

強誘電体の物性に関する研究は広く行なわれているが、その物理的性質の理解の基礎となる 結晶内の構成原子や、イオンの動きについての詳しい研究はあまり行なわれていない。

§ 2. BaTiO₃

代表的な強誘電体であるチタン酸バリウム($BaTiO_3$)についてもそれは例外ではなく,特に低温相の精密な構造解析は,ほとんど行なわれておらず, 0° K に近づくと,どのような原子間距離に落ちつくかもわかっていない。その理由としては,低温での高精度実験のやりにくさ,双晶構造の存在,それに,Evans らによって報告された,X線構造解析の場合の原子パラメーターの相関などが障害となるためである。我々は,これらの困難さを解決するため,X線回折と中性子線回折を併用し,各測定法の長所を生かす方法をとり,プロファイルアナリシス法を用いて,熱攪乱の少なくなった状態の4.2K で構造解析を行なった。また,比較のため,77K でも解析を行なった。その結果によると,格子の歪みは数十K以下では殆んど変化が止

北海道大学理学部物理学教室


まり、温度降下に伴い、酸素原子が Ti 原子の方へ、やや近づいて来る傾向が認められた。図 1 には $Ba Ti O_3$ の格子定数の温度依存性、図 2 には 77 K と 4.2 K の Ti-O 8 面体の歪みを示してある。

§ 3. $PbZr_{0.9}Ti_{0.1}O_3$

PbTiO $_3$ とPbZrO $_3$ の混晶系のうちの菱面体相は,2つの相から成るが,低温相(室温)の持つ超格子構造は酸素原子の動きと関係しているため,長い間X線回折では両者の構造的な差はわからなかった。1969年に中性子線回折法で,低温相の超格子構造が見出されたが,現在までに2つの異なるモデルが報告されており,パラメーターの相関の問題も残されていた。我々はこの物質に対しても,X線回折と中性子線回折を併用したプロファイルアナリシス法を適用した。その結果,酸素8面体の動きに関しては,Glazerらの結果を支持する値が得られ,パラメーターの相関はかなり減少し,構造の精度を向上させる事ができた。

§ 4. まとめ

以上の様に, $BaTiO_3$ (低温相)と $PbZr_{0,9}Ti_{0,1}O_3$ (室温相)の構造を解明,精密化する事ができた。また,その過程を通じで,X線回折と中性子線回折を併用したプロファイルアナリシス法の有効性を確かめる事ができた。

