1. Effects of Impurity Atoms on the Stage II_C Recovery of the Electrical Resistivity in Deformed Aluminum

Author(s)
OHTANI, Yasukazu

Citation
物性研究 (1982), 38(3): 117-118

Issue Date
1982-06-20

URL
http://hdl.handle.net/2433/90739

Type
Departmental Bulletin Paper

Textversion
publisher
1. Effects of Impurity Atoms on the Stage II \textsubscript{C} Recovery of the Electrical Resistivity on Deformed Aluminum

Yasukazu OHTANI

2. The Electrical Resistivity of Quenched Beta-Brass

Masaaki IIDA

3. Quantum Size Effect of the Electric Resistivity on Bismuth Films

Toshio YOKOKAWA

1. Effects of Impurity Atoms on the Stage II\textsubscript{C} Recovery of the Electrical Resistivity in Deformed Aluminum

Yasukazu OHTANI

The interaction of migrating defects with impurities has been investigated by electrical...
resistivity measurements using cold worked polycrystalline 5-nine Al and dilute Al alloys with Ag, Mg, Ge, Ti, Cu and Si. In the initial recovery stage, up to about 50 K, there is no remarkable difference in the recovery rates between alloys and pure Al. The following recovery stage, so-called stage IIc, is affected significantly by existence of impurities. The suppressive effect of impurities on migrating defects depends on the kind of impurity elements and is in the order, Ge > Si > Cu > Ag > Mg. By comparison this effect with that of impurities for self-interstitial atoms and for vacancies, respectively, it finds that the effect for migrating defects in stage IIc agrees with that for vacancies. It is therefore considered that the recovery in stage IIc in deformed Al is due to the migration of di-vacancy.

2. The Electrical Resistivity of Quenched Beta-brass

Masaaki IIDA

The electrical resistivity change in quenched beta-brass during isochronal annealing was examined by use of the ordinary bridge circuit. The reverse recovery appears at the temperature ranging from 100 to 150 °C. This reverse recovery is not reported yet and is considered to be responsible for a behavior of vacancies emitted from dislocation loops in the quenched specimen. Their behavior is investigated by Monte Carlo simulation and it is suggested that the life time of these vacancies until to annihilate to sinks, such as zigzag dislocations and large dislocation loops, is much longer in ordered domain than in disordered one. It is also observed by electron microscope that small dislocation loops annihilate and only large ones survive at the temperature range mentioned above.