ス面が壊れて,カオスが発生する過程に焦点をあててポアンカレ横断面をとってみると図4の ようになる。トーラス面上に折りたたみが生じていること,また,Cを大きくするとトーラス は壊れたように見え,最終的には直線状のアトラクタに変化してしまう。折りたたみが生ずる 臨界点での様々の普遍則を示すことは今後の課題である。

参考文献

- 1) V. I. Arnold; Trans. Am. Math. Soc. 2nd Ser. 46, 213 (1965)
- 2) S. J. Shenker (preprint)
 - D. Rand et al.; Phys. Rev. Lett. 49, 132 (1982).

3) Kaneko; to appear Prog. Theor. Phys.

熱対流系のカオスの性質

東北大・通研 佐野雅已・沢田康次

熱対流系(Bènard 対流系)の実験パラメータは、Rayleigh 数 R, Prandtl 数 $P = \nu/\kappa$, そしてアスペクト比(容器の最長幅と高さの比)である。熱対流系は、静止した容器中に閉じ 込められているため、外部からのノイズが少く実験は再現性に富み、乱流の発生過程の実験に 好都合である。しかも、アスペクト比が小さい場合は、Rayleigh 数を上げていった時、不 安定化する波数モードが少いため、連続系でありながら比較的少数自由度の系として振舞う。 そのため散逸系のカオスの問題として扱うことが可能である。

熱対流系のカオスの発生過程のタイプを大きく分類すると表1のようになる¹⁾Nはカオスが 発生するまでに必要な Hopf 分岐の回数である。この分類をもとに現在までに行なわれた実 験を調べると次のような問題点に達する。

- N=2の場合は、これまで個々の実験結果がばらばらに発表されたのみで相互の関係を 統一的に把えようとする実験がなかった。
- ii) f₂/f₁が無理数のままトーラスがカオスに至る場合が未観測である。
- iii) カオスの本質を探るには、これまでのパワースペクトラムのみによる方法では不十分で、 ポアンカレ写像を得ることが重要である。
- Ⅳ) 初期乱流(カオス)から発達した乱流に至るまでの実験(空間相関の減少など)がない。

表 1

Hopf分歧の回数 N	基本周波数	基本周波数の比	軌 道	カオスへの分岐
0			→ ↓ ← -	?
1	fı		\bigcirc	2 ⁿ 分歧 Intermittency
2	f, , f ₂	有理数		2 ⁿ
		無理数	\bigcirc	準同期→カオス
3	f ₁ , f ₂ , f ₃	無理数	3次元ト-ラス T ³	?

特に今回は、 j), j), j) に重点を置いた。我々の実験系は、作業液体として水を用いて おり、容器のアスペクト比 Γ = 3.0 (1.0×3.0×1.5 cm) で、Prandtl 数は平均温度で P = 5.5 と 6.2 の 2 つの場合について実験を行った。測定方法は、レーザー・ビームを対流のロー ル状構造の軸方向と平行に入射し、ビームの屈折を半導体の 2 次元センサーで検出した²⁾ x方

-B22-

向, y 方向の変位

は, それぞれ*x*, y 方向の温度勾配

に比例している。 図 2に Hopf 分 岐を起こした後の 基本振動数 $f_1 \ge f_2$ の R 依存性を示す。 図 3 は,振動波形 で上から順に, リミ ットサイクル (f_1) , トーラス軌道 $(f_1,$

 f_2), 初期カオス

状態に対応する。図4はP = 5.5の場合 のパワースペクトラムの変化である。R~ 57 R_c でスペクトルに幅が出始める。 P = 6.2の場合は $R \sim 96 R_c$ でカオスが 生ずるが、全体の傾向はP = 5.5の場合 と同様である。我々は、この結果を f_2/f_1 が単純な有理数でphase-lockしないまま、 軌道が乗っている2次元トーラス面が壊 れてカオスに至る例ではないかと考えた。 N = 2の場合は、トーラス面上の軌道と 考えると統一的に説明される。このとき もしポアンカレ横断面が得られたならば、 閉曲線となるはずで、ポアンカレ写像と して閉曲線を角度 θ で一次元表示したも のをとると次の離散力学系が得られる。

 $f(\theta); \ \theta_i \to \theta_{i+1}$

この写像の周期点は phase-locking 状

態に相当している。 f_2/f_1 に対応する量は、rotation-number wで次式で表わされる。

 $w = \lim_{n \to \infty} \frac{f^n(\theta_0) - \theta_0}{n}$

 $w = f_2/f_1 = q/p$ の場合は、p周期解 $\theta^* = f^p(\theta^*)$ が存在し、これらの周期解が不安定化する際 $Df^p(\theta^*)$ の値に応じ、 2^n 分岐と Intermittencyを起こし得る。次に $w = f_2/f_1$ が無理数のままカオスに至る場合は最近発見され、様々の普遍則が見つかっている³⁾実験では、長い周期の周期解とwが無理数の場合を区別することは困難であるが、長周期の場合カオスに至る際のポアンカレ写像は、 $f(\theta)$ のほぼ全体の様相を写し出すだろう。その結果として、Rayleigh 数の変化につれ $f(\theta)$ がどのように摂動を受け、トーラス面がいかに壊れてカオスに至るかを観測できる可能性がある。

その後の実験で、 f_2/f_1 が単純な有理数 (1/11)に phase-lock した場合と、 lockしない場合のポアンカレ写像が得られたので以下にそれを示す。図5及び6の(a)は、 $V_x T$ を3時刻t、 t+T, t+2t での値で3次元表示したものの2次元への射影で、(b)はそのポアンカレ横断 面を表している。図5は phase-lock 状態、図6はトーラス軌道である。(c)にそれぞれの場 合のポアンカレ写像 $f(\theta)$ を示す。パラメータの変化に伴い $f(\theta)$ が形を変え、 non-invertible になるとカオスが発生しうる。今後我々は、カオスの初期におけるポアンカレ写像を得ること

や、 f_2/f_1 をコントロールすることで、N=2の場合の現象を明らかにしたいと考えている。 実験の過程で森肇氏、蔵本由紀氏との議論から得るところが多かったので、ここに感謝します。

文 献

- 1) 森肇:シンポジウム「統計物理学の課題」 D4, (1980) 京大基研.
- 2) M. Giglio, S. Musazzi and U. Perini; Phys. Rev. Lett. 47, 243 (1981).