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1. Introduction

Significant improvements of electronic devices have been supported by rapid progress in

ultralarge-scale integrated (ULSI) circuits. Many studies of complementary metal-oxide-

semiconductor (CMOS) gate insulators have been performed in academic and industrial

fields of material research. The dielectric breakdown of insulators, however, is a serious

problem in reliability of advanced electric devices. Recently, the search for advanced ma-

terials superior to SiO2 and the renewal of MOS structures have attracted much attention

because the pursuit of device performance, which requires the downsizing of the gate insu-

lators, leads to the loss of device reliability.1 These problems require urgent solutions for

the generation of new CMOS. Many candidate substitutes for SiO2, that shows desirable

dielectric properties has been proposed. Some oxides and silicates, e.g., CeO2,
2 Pr2O3,
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Al2O3,
4 and Zr and Hf silicates,5–8 are known to maintain thermodynamical and chem-

ical stabilities on Si substrates. In recent years, lanthanoid-oxide dielectrics have been

considered to be good gate insulators because of their high dielectric constants and wide

band gaps. La2O3, for example, showed a dielectric constant of 279 and a band gap of 5.5

eV.10 Furthermore, some lanthanoid (Ln) elements, e.g., Ce and Sm, have been reported

to work as catalysts in the oxidation of Si substrates.11–14

In order to obtain computational results consistent with experimental results of Ln

compounds, careful treatment of valence electrons of Ln elements is required for electronic

structure calculations.15–17 In the calculation of cerium oxide, for example, Ce 4f in Ce2O3

is treated as part of the inner core, but that in CeO2 should be treated as a valence

electron.15 Moreover, the composition of lanthanoid oxide films on Si substrates is very

complicated and so are their electronic structures.11–14,18, 19 Transition layers composed

of an oxide layer, an silicate layer, and an interfacial layer are observed between the oxide

surface and the substrate. Ln atoms are stable as mixed states in the transition layer, and

the complicated structure of the oxide layer procuces a complex electronic structure.11–14

The characteristics of lanthanoid oxides are further reviewed in ref. 10.10

In this work, we focus on some oxides, such as La2O3, Ce2O3, Gd2O3, HfO2, and SiO2,

and calculate their electronic structures and local dielectric properties using the density-
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functional molecular-orbital (MO) method. In our previous calculation, we emphasized

the importance of the treatment of the valence electrons of Gd.20 we reported that

electrons in the 5s2, 5p6, 4f7, 6s2, and 5d1 states should be treated as valence electrons.

We follow this treatment in this work. This is because we want to get more precise and

detailed dielectric response of valence electrons than the conventional Clausius-Mossotti

(CM) relation.21 The analysis is based on the Rigged QED theory described elsewhere.22–28

2. Computational Methods

2.1 Electronic structure calculation

We have performed quantum chemical calculations for several small cluster models of

lanthanoid monoxides (i.e., LaO, CeO, and GdO) and several tetrahydroxides, such as

La(OH)4, Hf(OH)4, and Si(OH)4 using the density functional theory29 with the Molecular

Regional DFT (mrdft) program package.30

The calculations for small clusters can clarify details of the chemical-bonding charac-

teristics of metallic species and O atoms. However, these calculations are not sufficient

to understand the electronic structures of the condensed phase. Therefore, the electronic

structure of a large-scale model has also been treated in this work using a combined

quantum mechanics / molecular mechanics (QM/MM) method.

Following our previous results,20 the electronic configurations of La, Ce, and Gd have

been taken as 5s25p65d16s2, 4f15s25p65d16s2, and 4f75s25p65d16s2 for valence electrons

with 46 core electrons, respectively. On the other hand, the 4f, 5s, and 5p states of Hf are

located at levels so deep that these states do not contribute to bonding interactions and

can be treated as core states. The core electrons are substituted by effective core poten-

tials (ECPs) using the CEP-31G basis set of Stevens et al.31,32 Additionally, the f-type

polarization function of La is optimized. The exponent of the f function that minimizes

the total energy of LaO is determined to be 0.525. The contribution of the f orbital to the

interaction between Ln and O has also been studied by many researchers,11–17 employ-

ing the 6-31G* basis set for O and Si, and the 6-31G** set for H. In DFT calculations,

the Lee-Yang-Parr (LYP)33 gradient-corrected functionals for correlation interaction are

employed, and Becke’s hybrid three parameters34 for generalized-gradient-approximation
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(GGA) exchange-correlation functionals (B3LYP) are adopted. This condition provided

accurate results for gadolinium oxide clusters in our previous work.20

In this work, geometric optimizations and electronic structure calculations for each

cluster model are carried out using the gaussian 03 program package.35

2.2 Electron energy density and local dielectric constant

Using electron wave functions, local electronic properties such as the electronic stress

tensor density and local dielectric constant are calculated. According to the Rigged QED

theory,22–28 the electronic stress tensor density
↔

τ S(r) is given by a 3 × 3 matrix described

as

τSkl(r) =
~

2

4m

∑

i

νi

(

ψ∗

i
(r)

∂2ψi(r)

∂xk∂xl
−
∂ψ∗

i (r)

∂xk

∂ψi(r)

∂xl

+
∂2ψ∗

i
(r)

∂xk∂xl
ψi(r) −

∂ψ∗

i
(r)

∂xl

∂ψi(r)

∂xk

)

, (2.1)

where {k, l} = {1, 2, 3}, m is the electron mass, νi is the occupation number of the ith

state, and ψi(r) is the electron wave function.27,28

The dielectric constant density
↔

ǫ (r) is locally defined as a 3 × 3 matrix described as

↔

ǫ (r) = (1 − 4π
↔

α(r))−1, (2.2)

where
↔

α(r) is the local polarizability tensor density that satisfies

P (r) =
↔

α(r)D(r). (2.3)

In eq. (2.3), D(r) is the electric displacement of the external environment filled with

medium M, and P (r) is the polarization of system A embedded in medium M.28 The

local dielectric properties are related to the polarization of the system induced by the

electric displacement of the external medium. The polarization P (r) is represented as

P (r) =
1

4π
gradA0A

(r), (2.4)

A0A
(r) =

∫

A

d3
s
ρ(s)

|r − s|
, (2.5)

where A0A
is the gauge potential at r, obtained by integrating the charge density in system

A. The response of electrons against the external electric field D(r) is calculated by the
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self-consistent-field method. In this work, electronic structure calculations are carried

out under the condition of homogeneous D(r) such as D(r) = De composed of the

magnitude D and the unit vector e. Electronic polarization is calculated using eqs. (2.4)

and (2.5), and then the local dielectric constant is derived from eqs. (2.2) and (2.3). As

a result of these calculations, the relationship between chemical bonding properties and

local dielectric constants are determied because these quantities are derived from the same

electron wave functions.28

The electronic stress tensor density and the local dielectric constant are calculated using

the mrdft program package.30

3. Results and Discussion

3.1 Electronic structures of LnO

The optimized bond lengths of LaO, CeO, and GdO are shown in Table I. The calcu-

lated bond lengths of CeO and GdO show good agreement with the experimental data.36,37

The calculated bond length of LaO was improved with the basis set that contains the f-

type polarization function. According to the increase in atomic number, the radius of

lanthanoid atoms thnds to decrease because the addition of electrons to the 4f orbitals

does not shield the atomic nucleus. This is known as lanthanoid contraction. In the case

of the lanthanum oxide, the unoccupied f function is considered in the electronic structure

calculations as the polarization function, and the overlap between La(4f) and O(2p) sta-

bilizes the chemical bond. Thus, hereafter, the electronic structures of lanthanum oxide

are obtained using the CEP-31G plus f-type polarization function.

The MO interaction diagrams of LaO, CeO, and GdO are shown in Fig. 1. The 5p

and 5d orbitals are delocalized and contribute to the interaction between Ln and O. On

the other hand, the 4f and 5s orbitals remain intact in the Ln atom. In the case of LaO,

the MO levels are divided into two bands, with each band showing a different property.

In the lower-energy band, the interaction between La 5p and O 2s generates bonding

and anti bonding MOs because of the close energy levels of these two atomic orbitals

(AOs), −0.881 (−23.968) and −0.897 a.u. (−24.419 eV), respectively, and of their non

zero overlap interaction. In the higher-energy band, MO levels composed of La 5p,5d
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and O 2p are influenced by the bonding interaction of La 5d–O 2p and the anti bonding

interaction of La 5p–O 2p. In the cases of CeO and GdO, the orbital interactions are

explained as in the case of LaO.

3.2 Electronic structures of La(OH)4, Hf(OH)4, and Si(OH)4

Next, the electronic structures of La(OH)4, Hf(OH)4, and Si(OH)4 are calculated in

order to analyze the bonding states between metallic species and O atoms in oxygen

ligand systems. This discussion is motivated by the interest for the many folded Ln–O

interactions. In the calculations, all molecules were fixed in tetragonal symmetry (Td).

In the ground state, the bond lengths of La–O, Hf–O, and Si–O were optimized at 2.24,

1.92, and 1.60 Å, respectively. The angles ∠M–O–H (M=La, Hf, and Si) were fixed at

180◦. Figure 2 shows MO interaction diagrams of La(OH)4, Hf(OH)4, and Si(OH)4. In

the cases of La(OH)4, La 6s and O 2s,2p interact and generate a bonding orbital. The

singly occupied molecular orbital (SOMO) is a non bonding O 2p orbital. The bonding

state of La–O, however, shows almost the same characteristics as those of LaO.

It is interesting to understand the similarities and differences between La2O3 and HfO2

because HfO2 is known as a good candidate gate insulator, so that HfO2 has reference

properties as an advanced insulator. In HfO2, the interactions between Hf 5p and O 2s,2p

are considered to be weak because the calculated Hf 5p level of −1.408 a.u. (−38.327 eV)

is deeper than O 2s at −0.897 a.u. (−24.419 eV). The differences in bonding properties

between La–O and Hf–O clearly shown in Fig. 2. In Hf(OH)4, the O 2s level is weakly

influenced by Hf 5p. The bonding orbital generated from Hf 5d–O 2p is more stable than

that generated from La 5d–O 2p in La(OH)4 because of the weak contribution of the anti

bonding element caused by the Hf 5p orbital. On the other hand, in the case of Si(OH)4,

the bond between Si and O is caused by the interactions of Si 3s–O 2s and Si 3s,3p–O 2p,

as observed in the SiO2 bulk system.

3.3 Stress tensor density

The stress tensor density represented by eq. (2.1) explains local electronic stresses and

bonding characteristics. Figures 3(a) and 3(b) show maps of the stress tensor density for

La(OH)4 and Hf(OH)4, respectively. In these figures, one Hf or La atom and two O atoms
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are located on the same cross section, and the third principal eigenvalues and eigenvectors

of the diagonalized stress tensor density are plotted at each point. The positive or negative

quantities around the La, Hf, and O atoms explain the tensile and compressive stresses of

the electron density, respectively. The tensile stress observed between the La or Hf and

O atoms connected to each other is called the “spindle structure.”27 The stress tensor

density is calculated from the derivatives of the electron wave functions, and the chemical

bonding properties contained in the wave functions are clarified on the basis of the stress

tensor density as the dimension of energy density. In particular, in covalent bonds, electron

density experiences tensile stress because of the attractive interactions between atoms. In

this work, only the third principal axis, which corresponds to the largest eigenvalue, is only

focused on because the characteristics of chemical bonds are clarified best on this axis.

More details and some examples of the stress tensor density are shown elsewhere.27 The

difference shown in Hf–O and La–O is caused by the interaction between La or Hf and O

atoms, as described above using MO interaction diagrams. The electron density between

Hf and O atoms in Hf(OH)4 experiences more compressive stress than that between La and

O in La(OH)4. This is because the chemical bond Hf–O is mainly composed of bonding

orbitals formed by Hf 5d–O 2p and Hf 6s–O 2p, and in this case, the contribution of Hf

5p is very weak. On the other hand, in La(OH)4, La 5p interacts with O 2s,2p and causes

anti bonding components. Therefore, the electron density that contributes to the Hf–O

bond shows a more compressive property. The MO diagram is spatially visualized using

the stress tensor density. In Si(OH)4, as shown in Fig. 3(c), the electron density between

Si and O atoms experiences tensile stress in the regions represented by positive quantities.

The bonding character of Si–O in Si(OH)4 shows different images from those of La(OH)4

and Hf(OH)4. One of the reasons for this difference is the difference in the number of

electrons that contribute to the bonds. Mulliken atomic charges38 in these molecules are

shown in Table II. As a result, the charge transfer between metallic species and an O

atom is the greatest in Hf(OH)4 and least in Si(OH)4, so that electrons are exchanged

most prominently between Hf and O atoms and that the chemical bonds between them

become stronger.
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3.4 Local dielectric constant

The local properties of dielectric constants are calculated using eqs. (2.2)–(2.5) and

the results are shown in Fig. 4. The local dielectric constant depends on the electronic

polarization P (r) defined by eq. (2.3), and the responses of such polarization to the

external electric fields D(r) are attributed to the polarizability
↔

α(r). Therefore, the

local dielectric tensor represented by eq. (2.2) is calculated from the polarizability at

each point. In this work, polarizability was calculated from numerical finite differences.

The response of electrons to the external electric field calculated using the Schrödinger

equation shows quantum mechanical perspectives. The electron density derived from the

Schrödinger equation is drawn using continuous wave functions and not discrete values,

so that the dielectric constant that depends on electronic polarization is defined at each

point in a function space. The absolute largest eigenvalues and eigenvectors of the di-

agonalized dielectric constants are shown on the same cross sections in Fig. 3. In this

discussion, the largest dielectric constants are only focused on because the distribution

of the largest eigenvalues clearly describes the relationship between electrodynamics and

chemical bonding properties.

The distributions of the dielectric constants clearly differ between La(OH)4, Hf(OH)4,

and Si(OH)4. High dielectric constants were obtained between Hf and O atoms in

Hf(OH)4, as shown in Fig. 4(b). On the other hand, no such result was obtained in

La(OH)4 [Fig. 4(a)]. In the case of Si(OH)4, as shown in Fig. 4(c), large values were ob-

served between O atoms, not between Si and O atoms. The dielectric constant originates

from the response of electrons to the external electric field D(r), so that the inner electric

field E(r) changes as a function of D(r). In the regions where the dielectric constant

is larger than 1.0, it is concluded that polarization caused by electron displacements is

easily induced by D(r). In Hf(OH)4, in particular, electrons that contribute to the bond

between Hf and O atoms responded to D(r), generated polarization, and caused a high

dielectric constant.

Furthermore, Fig. 4(d) shows the result of an anionic state La(OH)−4 . In an ideal ionic

crystal of La2O3, La and O are considered to be ionized as La3+ and O2−, respectively.

Therefore, anionic lanthanum tetrahydroxide, LaO4H
−

4 , was calculated in order to realize
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the valence charges in its solid state. In this case, the length between La and O atoms was

optimized at 2.26 Å. The distribution of the dielectric constants of La(OH)−4 showed the

same tendency as that of Hf(OH)4. An added electron responded to D(r) and the polar-

ization appeared around a center La atom. As shown in Table II, the calculated Mulliken

atomic charges of La and O atoms in La(OH)−4 are 1.164 and −0.793, respectively, which

proves that the added electron occupied atomic orbitals of La and O and contributed to

the La–O bond similarly to the Hf–O bond in Hf(OH)4.

In order to confirm the results presented above, the local dielectric constant was cal-

culated for a large-cluster model of lanthanum silicate. The electronic structure of this

large cluster was calculated using the QM/MM method. In the QM region, electron wave

functions were expanded by the same basis set as those in LaO and La(OH)4. However,

in the MM region, atomic force fields were represented by the universal force field (UFF).

The silicate model was composed of 234 Si and 394 O atoms in the MM region and 7 Si

and 8 O atoms in the QM region. As a result, in the optimized structure, the coordina-

tion number was 8, and 8 O atoms existed within 3.0 Å from a La atom. Several cross

sections in which one La atom and two O atoms were located showed the distribution

of the dielectric constant in the disordered condensed phase. As shown in Fig. 5, high

dielectric constants were observed between La and O atoms. These distributions explain

a tendency similar to that in the anionic state such as La(OH)−4 , so that charges from the

environment are accepted in the interactions between La and O atoms, thereby causing

high dielectric constants.

It is concluded that La atoms in silicate or interfacial layers where charge transfer is

easily result in high dielectric constants, which neutral 4-coordinated lanthanum oxides

do not show.

4. Conclusion

In this work, we investigated the local properties of dielectric constants, focusing on La,

Hf, and Si oxides. Local dielectric constant is defined as a field quantity. The differences

in bonding characteristics between La–O, Hf–O, and Si–O were visualized using the stress

tensor density, and the origin of high dielectric constants was revealed. Electrons that
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contribute to La–O bonds in La(OH)4 were found to be not sensitive to the external

electric field, so that no high dielectric constant was observed in La(OH)4. The local

properties of a lanthanum silicate were investigated using a QM/MM method, in which

charge transfer from the environment to La–O bonds resulted in high dielectric constants,

as observed in La(OH)−4 and Hf(OH)4.

In our future work, the dielectric constant will be calculated taking into account the

molecular vibrational effect. Ionic polarizations will also be calculated to obtain accurate

dielectric properties.
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Figure captions

Fig. 1. MO interaction diagrams of (a) LaO, (b) CeO, (c) GdO at B3LYP/(CEP-31G,

6-31G*) level. Closed circles represent the occupied levels and dashed lines indicate

atomic-orbital contributions to the MOs. Values are written in atomic unit.

Fig. 2. MO interaction diagrams of (a) La(OH)4, (b) Hf(OH)4, and (c) Si(OH)4. Values

are written in atomic unit.

Fig. 3. Maps of the electronic stress tensor density for (a) La(OH)4, (b) Hf(OH)4, and

(c) Si(OH)4. One metallic atom (La, Hf, or Si) and two O atoms are located on

the cross sections. The short lines denote the eigenvectors of the third principal axis

corresponding to the largest eigenvalue of the stress tensor density. Contours denote

the values of −0.05, −0.01, 0.0, 0.01, and 0.05.

Fig. 4. Maps of the dielectric constant for (a) La(OH)4, (b) Hf(OH)4, (c) Si(OH)4, and

(d) La(OH)−4 . The cross sections are the same as those in Fig. 3. The short lines

denote the eigenvectors of the third principal axis corresponding to the largest absolute

eigenvalue of the dielectric tensor. Contours denote the values of 1.0, 2.0, and 5.0,

and areas smaller than 1.0 are shown in white.

Fig. 5. Maps of the dielectric constant for large-cluster model of lanthanum silicate.

There are eight O atoms within 3.0 Å from a La atom. One La atom and two O

atoms are located on the cross sections.

14



Table I. Bond lengths of lanthanoid monoxides: LaO with f and LaO without f mean the calcula-
tions performed with and without f-type polarization function, respectively. The calculations were
performed with a CEP-31G basis set and a LanL2DZ basis set.

Bond length (Å)

LaO without f LaO with f CeO GdO

CEP-31G 1.947 1.903 1.828 1.844

LanL2DZ 1.965 1.914 – –

Exp. 1.826 1.820 1.812

Table II. Mulliken atomic charges in La(OH)4, La(OH)−
4

, Hf(OH)4, and Si(OH)4.

La(OH)4 La(OH)−
4

Hf(OH)4 Si(OH)4

M (=La, Hf, or Si) 1.467 1.164 1.721 1.099

O -0.683 -0.797 -0.767 -0.599
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