<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>XIII準位の光電子分光・価数躍動状態をめぐる理論の現状　科研費研究会報告</td>
</tr>
<tr>
<td>Author(s)</td>
<td>酒井 治</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究　京都大学学術情報リポジトリ</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-05-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/90909</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
多孔性の光電子分光

東北大学理学部
超晶

1. はじめに

Dense Kondo状態にあると分類された一連の化合物、たとえば Ce金属や CeAl₃などに見られた XPS の実験において、4f-状態と関連するものはフェルミエネルギーよりも高いエネルギーにあらわれました。従って、フェルミエネルギー一定下での、おおよそ 0.5eV の値を持つ導電度であると考えています。

2. モデル

濃度を考慮にすると、Ceイオンを含む化合物を考える。電子系のハミルトニアンは次のよううちに定まる。

\[H = H_0 + V \]

\[H_0 = \sum_{k\sigma} E_k c_{k\sigma}^+ c_{k\sigma} + \sum_{j \in f} f_j^+ f_j + \sum_{jm, jm'} f_j^+ f_{jm}^+ f_{jm'}^+ f_{jm'} \]

\[V = \sum_{j \in f} V_{jm} (c_{j\sigma}^+ f_j + c_{j\sigma} f_j^+) + h.c. \]
積重質の変である。E_j は j 電子の一電子準位を表わす。C_e の場合 $j = \frac{1}{2}$ のグルーピのエネルギーが $j = \frac{3}{2}$ のグルーピより約 0.3 eV 低く、通常の温度では $j = \frac{1}{2}$ の寄生的寄生はなく、以下で $j = \frac{3}{2}$ のグルーピを $g_j = j = \frac{3}{2}$ のグルーピを g_j と呼びることもある。

クーロン相互作用を考慮した j 電子系を f_j と f_j' の分配律が実現され、f_j は主密度も

つとまる。

3. 光電子スペクトル

光電効果により放出されるのは j 成分の電子のみであると簡単すると、W_0 のエネルギーを持ち光により運動エネルギー E_k の光電子が生成される確率は次式つぶされる。

$$F(E_k) = \frac{1}{\pi} \text{Re} \int_0^\infty dt \ e^{i(E_k - \omega t) + \frac{1}{4} t^2} F(t),$$

$$F(t) = e^{i \frac{t}{2} \omega} \left\{ e^{\frac{i}{2} t \omega} f_m(t) + e^{-\frac{i}{2} t \omega} f_m(t) \right\}.$$

ここで $(f_m(t), E_k)$ はそれぞれ H の基底状態およびそのエネルギーであり、

$$W_0(E_k) = E_k^0 + E_0$$ であるとする。V を摂動とし W_0, E_k, E_k^0 を摂動前と W_0 F(E_k) にとる $k=2$ と 2 では図 4 の a と b, 4 次と 2 では図 4 の c, d, e と f であらわれる過程が生じる。V の 4 次までの第 2 回 $F(E_k)$ は次式のように与えられる。

$$F(E_k) = -\text{Im} \left\{ \frac{1}{\omega + E_k + i\delta} \right\} + \frac{1}{\omega^2 + (\omega + E_k)^2} \right\} + \frac{\nu \theta(W)}{(\omega + E_k)^2}$$

$$+ \frac{1}{\omega^2 + (\omega + E_k)^2} \left\{ \frac{(\nu - 1) \lambda \frac{1}{\nu}}{E_k^2} - \frac{(\nu - 1) \lambda \frac{1}{\nu}}{E_k^2} \right\} \theta(E_k) + \frac{1}{(\omega + E_k)^2} \left\{ \frac{(\nu - 1) \lambda \frac{1}{\nu}}{D} - \frac{(\nu - 1) \lambda \frac{1}{\nu}}{D} \right\} \theta(E_k).$$

ただし $\omega = \omega_k - \omega_0$ である。$\theta(W)$ は Heaviside の関数である。ここで $\delta = \omega_k$ とおいた。また ν, λ, δ の組を適当な値をすればよし、それと $\nu \theta(W) < 0$ とした。

となるが、導出の過程とあらかじめ $\nu = 0$ と $\lambda = 0$ とした。$D = \nu$ となる系の 2 極平均 $\lambda = \lambda$ と $\nu = \nu$ は互いに等しいとみなし 2 と 2 とみなし 2 とみなし 2 の仮説が生じる。この式で $\theta(W) = \lambda \nu / D$ の関数を含む部分がフェルミエネルギーを変数として与えた部分に対応する。この領域は図 5 からとえた部分と図 5 からとえた部分の 2 個所から生じ、前者から導出 2 と 2 も後者から導出 2 と 2 もあわせて図 5 の

2 と 2 の仮説が生じる。この式で導出 $\theta(E_k) = \lambda \nu / (\nu + E_k)$ を持つ部分は ω_k と

- 80 -
ピークの数5値エネルギー側にtailを含む光電子スペクトル構造を示す。これは
内数が3の場合のフェルミエネルギー等含む場合である。
この漸緩は図(e)、(c)、(a)のうち
行状態から生じる。この状態はf-障壁を越して伝導帯の電子が生じた状態である。
なお、(a)のスペクトルはエネルギーが4の場合には現れない。
次にΔ=νe-νgが有限である場合を考える。このスペクトルは次のようにみ
われる。

\[
F(\omega) \sim \frac{2N(\omega)}{(\omega+\omega_g)^2} \left\{ \frac{1}{(\omega-\omega_g)^4} + \frac{1}{(\omega-\omega_g)^2} \right\} \theta(\omega)
\]

(7) 式では

フェルミエネルギーとそれより大きいエネルギーの区間におけるピークがみられる。
スペクトル相関関数を用いた任意エネルギーの観測値はフェルミエネルギーの
下側に若干の片薄をもつ。また解析結果からエネルギースケールは中程度
であると言える。しかしながらこのエネルギー現象は存在し、τは10-100 fsであ
りかつ値を大きくする。一方スペクトル相関を用いたピークの特性はフェルミエネルギーより0.3 eV程度深いので、低エネルギー現象に直接性をあらわすことはないであろう。

UPS、XPSの実験におけるresolutionは0.3, 0.6 eV程度である事も考慮すると実験的に観測されるフェルミエネルギー下のピークの巾が約0.5 eVである中実験の
結果はスペクトル相関を用いた理論値は相当であるように思われる。
再び4=0とおいてω→0についてのωに於いてO(\omega^2)まで計算し従来観測された
結果と一致する。
引用文献

図1. XPS スペクトル

図2. 失去 UPS スペクトル

図3. 失去 UPS スペクトル

図4. 2次振動のプロセス

図5. 4次振動のプロセス