<table>
<thead>
<tr>
<th>Title</th>
<th>X Hubbard模型の強磁性について 価数揺動状態をめぐる理論の現状 料研費研究会報告</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>久保 健</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 39巻4号 (1983) 67-69</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-05-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/90912</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hubbard 模型の磁性について

筑波大学物理学系 久保健

単バンド Hubbard 模型は金属強磁性の模型としても、よく用いられる。その理由は金属強磁性をモデルに得る模型としてこの模型が最も简单だからである。しかしこの模型については次元を除き正確に解ける解ではない。そこで求めた近似理論が開発され適用されてきたが、それらの結果は必ずしも一致していない。この模型が金属強磁性をモデルに得る結果は必ずしも満足できないものもある。そして従来の代表的な結果について述べ、あわせて最近我々が行った高密度電子の手法の結果を提示したい。

よく知られている単バンド Hubbard 模型は次の様に書き表わされる。

\[H = \sum_{ij \uparrow \downarrow} t_{ij} C_i^\dagger C_j + \sum_i N_i \] (1)

この系を記述するパラメータは \(t_{ij} \) と格子構造で決まるエネルギーパンド \(\epsilon_i \) 、電子数密度 \(N_i \) である。エネルギーパンドには無限の可能性があり得るが、以下では主に最密接格子点間のみ \(t_{ij} \) を持つ系について論じてみた。スピン密度 \(\mathbf{w} \) を表わす。

このような基底状態はひっくり返し運動エネルギーを最小にする強磁性状態である。他に有限の場合は反強磁性状態である。ひっくり返し相互作用エネルギーを低くする強磁性状態が安定化するものの最も簡単な Hubbard Fock 近似の考えである。強磁性になる条件 \(\epsilon_i > 0 \) であるが他に秩序状態（電子密度波、反強磁性）の可能性もある。SC 核子に対して Penn はこれらの観点を同じ相関を求めるがそれによれば \(\epsilon_i \) とは関係ない範囲で強磁性が安定である。しかし Hubbard Fock 近似においにイチレンの相関効果がより入れられあれば \(\epsilon_i \) の領域では不充分である。相関効果は電子密度状態のエネルギーや下げられ強磁性は起こりにくい。この相関効果をとり込む理論として Kanamori 理論、Gutjahr 変分法、Green 関数の方法が知られている。

Kanamori 理論は二体の散乱を正確に扱う事により実効的な相互作用の強さ \(U_{\text{eff}} \) が相関効果により \(U_{\text{eff}} \) と \(1 \) のオーダーに抑えられる事が考えられる。この理論は \(\epsilon_i \) の相関に正しいが、この強磁性が生じる条件は状態密度を強く依存し、\(\epsilon_i \) の観点が実用面で議論することが必要である。しかし実用的に単バンド模型で状態密度がバンド端で発散する fcc 核子にこの理論を用いるバンド端で \(U_{\text{eff}} \rightarrow 0 \) という強磁性になるか否かは明らかではない。

Gutjahr 変分法では基底状態の変分波動関数として \(A = \prod_i \left(\frac{1}{2} | \sqrt{\text{N}_i} \right) \) をとる。この二体は一様の波動関数で \(\epsilon_i \) が同じ数を占める確率の減少を表す変分パラメータでエネルギー期待値を最小にする様に決める。しかしこの様に簡単な変分関数を選びエネルギー期待値計算は評価不可能であり、近似として無相互作用物に対する Kikuchi 近似の様な手法が用いられている。最近の Takamori-Okiji の結果によれば Sc, bcc 核子では \(\epsilon_i > 1 \) であるが、fcc 核子では \(\epsilon_i > 1 \) で強磁性基底状態が得られている。
Green関数を近似する方法としてはHubbard IIの方法が良く知られていますが、いわゆる scattering correctionのみを採用した場合は、反対にスピン電子の運動を止めクラスタデュームを分布させた後のCPAに一致する。この場合、いわゆるぎりぎりバンドがもとで帯磁性状態の核磁率が発現しない事があることがFukayama-Ejima理論により示されている。

以上に見てもこの方法で一致した結果を得ることは困難である。しかしKanamori理論で反

分光でもびっくりの核磁性状態もある。この場合、異方向を持つ岩が存在する</s>
Br(0)の核数は有限温度で極端に収まる事実を、BECの存在性を示すBECの核数は発散しない。FCCでの推定から予想されるP0の距離と対の数は、BECの存在性を示す。FCCでの高さを求めるためにP0の高さが保たれる。それは3式と同じ形をしていてその係数を

\[\text{BEC}(0) \] と表わす。\(\text{BEC}(0) \)は\(\text{BEC}(p) \)に比例する约数的な関数である。一方\(\text{BEC}(p) \)の持っていた過剰的な性質は失われる。この\(\text{BEC}(p) \)を用いて\(\text{BEC}(0) \)の高さを求めるためにP0がの手法で計算してみた。\(\text{BEC}(0) = 0.45 \)の領域では\(\text{BEC}(0) \)を用いないパッケ近似も多く、得られた\(\text{BEC}(0) \)の値を求める。\(\text{BEC}(0) \approx 0.495 \)の領域では多くのパッケ近似が\(\text{BEC}(0) \)の附近に\(\text{BEC}(0) \)値を与える事で検出された。\([n,m] \)近似
の\(n=n \)一定にして\(n=m+6 \)及び\(n=m+9 \)の二点、あるいは\(n=m+6 \)及び\(n=m+9 \)の二点を\(n+m = \text{定数} \)に外挿した値を図2に示す。

但し\(n=m \)の場合[4,4]近似は\(\text{BEC}(0) \)を与えない。この結果から考えるとこの領域では有限の\(\text{BEC}(0) \)が現れる可能性があるが、これは\(\text{BEC}(0) \)を変数とした別の解法を用いている。

この部分では高次の係数の大きさが相対的に小さいので構成的な寄与を与える3次以上の係数の影響が強く残り、\(\text{BEC}(0) \)の可能性もある。結果は未だ十分収束しているのではないか、どちらにしろも高次の係数を調査しなければ解は得られない様である。

最近Takahashiにより12個の粒子を持つ系の基底状態が測定された。それによれば\(fcc, hcp \)の構造を持つ系はほとんど全ての電子数に対して完全磁性基底状態を持つ事が判った。しかしこれらの領域は441面構造を持つ系は少数系はパルク系よりも磁性になりやすい事が期待されるのに、この結果は逆にパルク系と統一づかれないとは明らかではない。

以上述べた事は\(Z=\infty \)の場合でも単純なHubbard模型で磁性相を示すにもかかわらず未だに実験に到達していない。

* 以前我々がICM 82 Kyotoで発表したPadéの計算に一部誤りがあり、それを訂正した結果、結果が非常に変化した。