<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
</tbody>
</table>
dense Kondo-superconductor CeIn₃

CeIn₃は、CuAu型構造をとており、多結晶については過去に非常に多くの報告があるが、単結晶については中性子散乱の実験があるだけである。多結晶の電気抵抗は、高温でdense Kondo的なるみを示し、50 K付近にbroadなmaxを持ち、以下減少し、Tₙ（=10.2K）以下で急激に減少する。この度、単結晶の作製に成功し、電気抵抗の測定を行い、図1.2に示すように、2以下が7.7 Kから更に急激に減少し、6.1 Kで完全に超伝導になるという結果を得た。また、4.2Kでの強磁場抵抗は図3のように、4200eで超伝導が破壊、徐々に増大し、5Koe付近で飽和する。以上のようにTₙ付近に非常に広い領域を持ち、この付近内でも場所によりて、Hに分布があると考えられる。しかし、電磁ノイズをなくすため、絶縁子及び試料を行うと、試料を示した試料について、最初に示したように酸化状態を観察した。In（=3.9K）を電気抵抗としても再現性のある結果が得られたことから、端子間にはんだの挙動をどこていたという可能性は否定された。また4.2Kでの絶磁場抵抗が絶磁場抵抗とほとんど同様に見ることが、表面における超伝導という可能性も否定される。小松田教授の協力の下で真空電子顕微鏡で分析をしない。ルツボに使用したMoが含まれている可能性は、ある超伝導を示す試料がCeIn₃からできると思う。たとえば、隣りの相のCeIn₃が混じっている、あるいはIn-siteにCeが合わっている等の可能性が考えられる。しかしいずれにしてもCeIn₃が存在しない時に近い組成の物質を超伝導を示すものがあることは間違いないと考えている。今後、蒸着抵抗抵抗が超伝導を示すでに、超伝導を示す部分がバルク全体なのか否かをチェックするため、マイナー発電をかるかを改めていくつかのCeIn₃の単結晶を作製し、用鋼の状態、移動量の分布を調べる予定である。⑧マイナー発電は観測され、バルクの96％が超伝導になっていることが明らかになった。3月2日