<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>黒磷についての最近の研究, 凝縮系種々相の最近の展望, 科研費研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>森田 章</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究, 細胞の形態変化と核分裂</td>
</tr>
<tr>
<td>日付</td>
<td>1983-06-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91006</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
81. Introduction

黑焔は常温常圧での焼の同素体のうちで最も安定な構造で、その結晶構造は他のV族元素（Se, As, Bi）とは異なりオ1/4のような層状構造を持つ。各層内では原子間の平均距離はほぼ等距離にある3個の Flame原子と3個の軌道による共鳴結合を形成し、化学的に饱和している。したがって、層間の相互作用はフォンデル・ワールス力である。黑焔と他のV族元素のとはA7構造との関係をオ1/4で示す。著者の問題は単純立方格子から導かれる。すなわち、A7構造は6配位の単純立方格子においてオ1/4で示される結合を切って3配位構造を形成することによって得られる。他方黑焔構造はオ1/4のような点群の結合を切ることによって3配位構造を形成する。これらはオ1/4を構造変異の層に相当するもののように変形させることによって得られる。

黒焔は、1950年～1960年代に多結晶材料による研究から0.35eV程度の狭いギャップのP型半導体であることがわかっていた。黑焔は圧力をかけると約55kbarでA7構造の半導体相に、さらに/10Kx近寄り単純立方格子の金属相に相転移することが知られている。この金属相は超伝導を示す。

実験のように黒焔には色々に多様性が期待されるが、その実験的・理論的研究は後半において大きな進歩を示した。その理由は単結晶としての均質微結晶しか得られてなかったためである。著者はかねてからの黒焔の特性研究を進めており、そのバンド構造と圧力による相転移の理論的研究を行うとともに、実験的・黒焔単結晶の育成の重要性を育む。これに対する反応は意外に早く、1980年代に城谷（物理メ）らが、ついて成田（阪大）らが黒焔単結晶の育成に成功した。これらの成功を契機にして、現在はもとより黒焔の特性研究が急速に進展しつつある。以下では黒焔の研究の現状と理論サイドに焦点を置いて紹介する。

82. 黒焔の電子構造

（A）バンド構造　我々はtight-binding近似及びセルフエントシテ機能型シャル法の2通りの方で黒焔のバンド構造の計算を行った。後者の方法によると結果をオ1/4面に示す。ブリルバーン面はオ1/4面に示されている。黒焔は単位胞あたり20個の価電子を有
するので、10個のペンドルが導かれている。ペンドルと傾斜器の間には2点の導線を付け、約15％、20％、25％、30％、35％、40％、45％、50％、55％、60％、65％、70％、75％、80％、85％、90％、95％、100％の9段階の導線を付けた。導線の導入を含めて、ペンドルは9段階の導線で通じている。従って、2次元的な単一層のペンドル構造は3層の集合構造に由来するペンドル帯をもとから導入される。2層の導入構造は3層の集合構造に由来するペンドル帯を、従って3層の集合構造に由来する伝導帯を保持する。すなわち、3層集合構造のペンドル帯の下には3層構造の立合電子帯のペンドル帯が存在する。2次元的なペンドル帯の厚さの比較的小さい導入構造を用いて3層の集合構造に由来する伝導帯の運動が発生し、このように「一方向から一方向へ」としてペンドル帯の上端は上向きに、伝導帯の下端は下向きの運動を示し、結局2点に0.3 V程度の逆向き2階導入ギャップが生じることになる。この現象を反映してペンドル帯と伝導帯の状態密度（DOS）はギャップの導入では比較的小さく、ギャップから0.2 V程度離れると3から急激に大きく広がっている。

表5図はペンドルの状態密度及び紫外線光電子スペクトル（XPS, UPS）の結果とDOSを比較したものである。理論と実験とは大差がない。しかし観測結果とエネルギーの高い方から1番目と2番目のピークのエネルギー間隔が理論の方が実験よりも若干大きい。表6図は角度分解型光電子スペクトラムによるペンドルのペンドル構造の実験結果と理論との比較を示す。上記のDOSの場合と同様に傾向が見られる。

2点でのキャリアの有効質量はサイクロ

トロン帯の実験で測定されている。表7

に有効質量の理論値とホール移動度と有

eff

効質量の実験値を示す。この表で注意され

るものは、電子のホール移動度（b(g))の有効質量が

特に小さいことと、有効質量の異方性と

移動度の関係が、電子の移動度に関して一致

しないことである。

表8図はペンドルの帯間の直線密度E1*、
E1**に対する反射率スペクトルの測定

結果とバンド計算の結果から計算される

反射率変数から求めた反射率スペクトルの

理論結果を示す。詳細な議論は省略するが、

全体として実験結果の特徴的な傾向を示す

理論は元でより説明されている。上記の結果を示す表の実数は実数の重ね合わせを求めるプランク積数は20 eVである。他方速度24、26、28は気体の相互作用によるXPSの測定結果から求めたプランク積数の実測値は20.1及び19.8 eV[9]理論値とよく一致する。

（6）圧力による相転移

表8はペンドルの圧力による相転移を調べる目的で各々の帯間構

造に対する結晶エネルギーを密度の関数として計算した。計算は構造決定法を用いて摂動テナンシャルについて3次までの近似を行った。表8図がその結果であるが、エネルギーは

-79-
価電子1個当たりミリオン倍で表わされている。原子状態のエネルギーは原子の上部を水平線で、常温での黒処の結晶エネルギーと固体の点（d）とえられる。従って黒処の結合エネルギーは約2.493 - 2.5988 = 0.0505 Ryd/電子である。この図からわがるように、固態を上上げてゆくと半金属的なA7構造から金属的な単純立方に相転移することがわかる。この転移圧の計算値は約100 kbarで実験値の110 kbarとよく一致する。計算では黒処構造よりも半導体状の黒処に対しては近似が悪いためである。この点を改善するには各密度のところで黒処構造の構造パラメーターを変数としてバンド計算を行い、電子系のエネルギーや構造パラメーターの関数として求めた必要がある。この計算は大変なこと、1000レベルには基本的密度構造の計算結果から結合エネルギーよ計算した結果が点（C）である。この結果は一定黒処構造が最も安定であると理論に示す。結合エネルギーよ1個0.0474 Ryd/電子で上記の実験値0.0505 Ryd/電子と割り低い一致をとる。

3. 格子振動

黒処の原子間の原子間相互作用は強い共役結合であるが、層間のそれは弱いフェルミー・ワールドである。このような性質を持つ構造を持った黒処の格子振動はそれぞれ自体としても興味があるが、キラリヤーの移動度の異方性と異化でキラリヤーと格子振動との相互作用の問題の上からも興味がある。以上、黒処はSiやGeと同じく半導体系となる同極性結晶であるが、SiやGeとは異なって1個のフォノンによる赤外吸収が可能であり、さらに、フォノン過程による赤外吸収の特性は電子の伝導性が期待される点などが注目される。

我々はカーティスモデルを用いて黒処の格子振動の理論的研究を行った。オ1図は17個のカーティスモデルを用いた格子振動スペクトルである。

9本の光学的振動のうち6本は主として相関結合バンドの伸縮が関係し、バンド間の角度変化が主に知られている。他の3本の振動系とも同じように振動が鳴り、層状構造の効果層に垂直方向の光学的振動の分解がほとんど無い。層状の方向の音響的振動の複数の一つが下方向に凸の分散を示すことに規律されている。オ1図は光学的フォノンの振動数の実測値と理論値とを示している。実線は、実験値に近い散乱の個々の振動数を示す。実験値と計算値の関係に示したものをである。

オ1図は格子振動スペクトルからフォノン振動数分布を求め、それを用いて計算される式に示すことができる。実験的と理論的振動数を比較したものです。}

<table>
<thead>
<tr>
<th>振動数</th>
<th>実測値</th>
<th>理論値</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma^+(Ag)$</td>
<td>471</td>
<td>470</td>
</tr>
<tr>
<td>$\gamma^+(Ag)$</td>
<td>365</td>
<td>362</td>
</tr>
<tr>
<td>$\gamma^+(Bg)$</td>
<td>436</td>
<td>439</td>
</tr>
<tr>
<td>$\gamma^+(Bg)$</td>
<td>230</td>
<td>232</td>
</tr>
<tr>
<td>$\gamma^+(Bg)$</td>
<td>195</td>
<td>191</td>
</tr>
<tr>
<td>$\gamma^+(Bg)$</td>
<td>441</td>
<td>441</td>
</tr>
<tr>
<td>$\gamma^+(Bu)$</td>
<td>470</td>
<td>470</td>
</tr>
<tr>
<td>$\gamma^+(Bu)$</td>
<td>212</td>
<td>212</td>
</tr>
</tbody>
</table>

"不活性モード" $\gamma^-(Au)$ = 410
黑鉛の有効テーパイ温度が他の多くの結晶と異なり温度とともに単調に増大するのは層状構造のためである。

これらを主なため、フォノン分散の計算結果を用いて2次ラマンスベクトログラフや多フォノン過程による赤外吸収スベクトルに対する差分依存性などの実験の解釈が可能であるが制約される。キャリヤーと格子振動との相互作用についても解釈する。

§4 まとめ

以上において黒鉛の研究の現状と理論を中心に紹介して来たが、いずれも理論が先行し、その結果を実験が確認することを経過をたどって来た。しかしこれからの実験に先行することに対する期待がある。今後の研究の趣旨としては、黒鉛のインターオクションの可能性、Asなどとの合金の研究、半導体の物性の圧力依存性などが考えられる。いずれにせよ黒鉛についての研究の進歩は始まったばかりである。

文献

3) I. V. Berman and N. B. Brandt : JETP Letter 2 (1968) 323.
(1979) 643; S. Sugai, T. Ueda and K. Murase: JPS Jpn. 30
15) M. Ikegawa, Y. Kondo and I. Shirotani: JCP Jpn. to be
published.

\[\text{Graph and diagram images.} \]

\[\text{Graph and diagram images.} \]