<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>非整数ホール効果とCDWモデルのアンダーソン局在の総合的研究 斜研費研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>倉本 义夫</td>
</tr>
<tr>
<td>資料</td>
<td>物性研究</td>
</tr>
<tr>
<td>リリース日</td>
<td>1983-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91067</td>
</tr>
<tr>
<td>トピック</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版元</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
生番数子ホール効果とCDWモデル

東北大学 工 倉本義夫

§1. 略論

Si-MOS 反転層で発見された量子ホール効果は、一体論の範囲では理論的解析が進み、\(\sigma_{xx} = \sigma_{xy} = 0 \) の場合には、\(\sigma_{xy} = -\frac{e^2}{h} \times (\) 電数 \) という性質が、実験的には示されていない。\(^{1,2}\) 分子線総合効果で作られた GaAs-Al_xGa_1-xAs へテロ接
合では、二次電子の移動度を Si-MOS より二倍以上高くすることができるため、よりはっきりした Hall plateau の出現が可能と考えられる。実験、50mK の実験 \(^{36}\) では関
ダラ準位中央とフェルミ準位が一致する近似でのみ \(\sigma_{xy} \) が変化し、他の位置の領域では \(\sigma_{xy} \) は量子化されている。この事実は、強磁場下の電子波動効果が関する準位の中央付
近以外ではすべて局在している \(^{30}\) と考えることにより理解することが可能である。

一方 Tsui の検証 \(^{37}\) は、最も関る準位においてのみ電子が分布する状況 \((H > 60 \text{K}) \) を仮定
する、ラジウム準位の占める \(\nu \) が \(\frac{1}{3} \) 近で \(\sigma_{xy} \) plateau が出ることを見出した。この効果は \(\nu \) 以下で顕著になり、\(\sigma_{xx} \) には対応する \(\nu \) でヘミが生じる。更に移動度の
大きい試料 \((x = 4 \times 10^5 \text{cm}^2/\text{V} \cdot \text{s}) \) では、\(\nu = \frac{2}{3} \) と \(\frac{2}{3} \) の準位が \(\sigma_{xy} \) に半分のため、半たた板状になる \(\sigma_{xy} \) plateau が出現することを報告している。この時、\(\sigma_{xy} \) の
plateau は非整数値に量子化されている。

一体論では、\(\nu \) が \(\frac{1}{3} \) と \(\frac{2}{3} \) の所で局在化に特別な効果が現れるとは考えにくい。なぜ \(\nu \)
が整数値に量子化されるのかは不明である。そこで一体論の条件下で、電子間相互作用の効果が \(\sigma_{xy} \) にどう
影響するかを考察する意義がある。本稿では、移動度の大きい試料では電子間相互作用
が関係せず、局在化ガメオロジーも重要になるために、電荷密度波 (CDW) 状態が実現されている
可能性を考える。CDWモデルでは \(\nu = \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \) での Hall plateau が自然に説明され
る。また、CDW状態では Langellin の議論が成立しなくなり、非整数の量子ホール効果が許容されることを示す。

§2. Hartree-Fock 近似 (HFA) での CDW 状態

まず、基底ラジウム準位にのみ電子が分布し、それ以外のラジウム準位は無視できる状
況の積算系で得られている結果をまとめておく。国には \(\text{Gerhards}^{10} \) により、HFA の範囲で求められている
系の相図である。破綻はわたくしにより先に求められた結果を示す。残りの結果は、\(T = T_0 = 0.136 \text{eV} / \text{K} \) \((x = 0.5 \text{K}) \) 付近での Ginsburg-Landau (GL) 重力面を外挿したものである。\(\nu = 0.5 \) 付近に四角板が現れていることを注目され
たい。この原因は系の支持電子-支持対称性である。即ち、\(\nu = 0.5 \) では、電子-正交対称性を不安定に保つ状態は不変
状態
宏. self-dual である四角格子しかない。
一方, T = 0 では L が有理数 K/M の場合, CDW の単位胞に電子が一層ある条件の下で系のバンド構造と基底状態エネルギーを求ることができる. 総合と Gorkov は,最近現れる L = \frac{1}{2} の場合にこれを実現し, GL 理論から得られた結果と矛盾しない結果を得た. 還ち, 基底状態は三角格子ではなく, 四角格子の CDW になる. ところが, この四角格子では, 電子, 電子対対称性が自然的でなく, 状態は L = 0.5 で非対称で[13]. 電子, 電子対対称性が満たされ四角格子のエネルギー的に少し高く (1%) バンド構造はゼロギャップ半導体になっている[14]. 各格子形の HFA エネルギーは非常に接近しているので, 実験的な基底状態エネルギーとの相違の逆転は起こり得る。

そこで、任意の L = K/M (K, M: 正に奇数整数) の場合, 磁場の存在のために Bloch 条件が満たされる原子格子は CDW の単位胞の K 倍の周期を持つ. すなわち L = 49/100 の場合, 純粋系では 100 のバンドが現れるが, Bloch 単位格子が存在しない (K=49) ために, バンド形成には非常に大きいスケールの系の均一性が必要である. ただ, いずれにせよを考えると電子は CDW の domain を作り[15], domain 内でエネルギーは \frac{1}{2} を満たすように再配置することを考えられる. L = 49/100 は CDW の単位胞と Bloch 単位格子が一致するので, 純粋エネルギーは単位格子のスケールでの系の均一性があらかじめ確保されるものと考えられる. それ故, L が \frac{1}{2} や \frac{1}{4} 等の簡単な整数比で書られる場合に CDW は特に安定化され, この近傍の L では局所的に commensurate な CDW が出現する可能性がある。

8.3. L = \frac{1}{2} 付近での Hall plateau の起源

電子間相互作用を仮定では仮定した場合には, 電子間相互作用を HFA で扱うことにより, 電子, 同様にボストとの対応をつけることができる. 一方, 電子間相互作用が内力なので, 電子では範囲上, 基底状態を影響を与えないことに注意すると, 乱数そのもので基底状態のエネルギーのみならず, 純粋系の \(\sigma_x = -4eC/H \) (H: 磁場) の部分的に打ち消すことができることがわかる。

\[\frac{\sigma_x}{2} \text{ 電子} \quad \text{(図2)} \]

\[\text{ENERGY} \]

\(\mu \uparrow \)

ここで, HFA の準位状態は, CDW が形成されると磁場に応じて降低型のようなになる. ここで, フルール準位近傍の状態が層立していると, 電子数を変えると \(\sigma_x \) の値は不変なので Hall plateau が出現する. この時の \(\sigma_x \) の値は \(-\frac{1}{2} \) に極めて近いと考えられるが, 脈波の量子ホール効果の精度があるかは不明である。我々のモデルでは, CDW に伴わないエネルギーギャップが存在することが, 層立状態の形成を助ける Hall plateau をもたらすことに注意されたい。換りに, L = \frac{1}{2} では CDW ができても四角格子のギャップがなければ[12], 層立状態は形成されにくい信って Hall plateau は現れない. したがって, HFA での CDW の極微温度は L = \frac{1}{2} で最大になることと, Tsuei の実験[7]で L \approx \frac{1}{2} の plateau が見出される事実は, 相互に矛盾しないことがわかる。
第4.検討

我々のCDWモデルでは、$
$が簡単な整数比になる場合の近傍でCDWのdomainが形成され、通常の電子状態が変換した状態を復元するとして、Hall plateauを説明した。$
$の$s=\frac{1}{2}$での$G_{xx}$のヘニック数、ギャップ数のあるCDWが形成されたとして解釈することができます。なぜなら、フェミ準位での状態密度はG_{xx}が整数である場合CDWの消失を伴わないf_{xx}のヘニックはピークに極値する考えられる。後者がPaulaen et al.の実験状況に対応すると解釈される。

ここで考えてみた考え方は、特に定性的で、commensurabilityの評価、またそれを考慮したs_{xx}の計算等定量的には述べられたものが多い。これには今後の機会に譲らず、著者に最後にLaughlinの議論[12]との関連について述べていただく。

Laughlinの議論の要旨は、「リボン状試料の中空部をつらぬと磁束が磁束量の変化に変化した時に絶対の波動項数が変うである、ということにある。ここでホール電流をもたらす状のエネルギー変化ΔUは、整数値の電子がリボンの一端から他端へ移動したとからここ、$I=\Delta U/\Psi_0$と関係づけられる。さて、CDWにより系の対称性が自発的に破れ準状態が縮退していると、$
\Psi_0 \rightarrow \Psi_0 \oplus \Psi_0$の変化で波動項数が縮退した別の波動項数に変換することも許される。$
\Psi_0 \rightarrow \Psi_0 \oplus M\Psi_0$（M:整数）のときで初めて元の波動項数に戻る場合には、δ_{xx}は$-e\delta_{y}(hM)$の形式に量子化される。$M=3$が$
\Psi_0 = \frac{1}{2}$の場合のCDWに相当する。

最近、Laughlinは先に、上の$\Psi_0 = \frac{1}{2}$に基づいてyre$B_{\alpha}(x+y)$なる波動項数を提案している。Ψ_0の反対称性から、$\Psi_0 = \frac{1}{2}$、$\frac{1}{2}$…等のみが許されることで、$y_{xx} = \frac{1}{2}$でのHall plateauの欠陥と関連するようである。しかし、この波動項数では$\Psi_0 = \frac{1}{2}$も許容されないので、その妥当性には疑問がある。

参考文献
8) H.L. Stormer et al., preprint (1982)