
TWO-DIMENSIONAL ANDERSON LOCALIZATION UNDER STRONG MAGNETIC FIELDS

Yoshiyuki ONO

Department of Physics, Faculty of Science, University of Tokyo

§l. Introduction

When we consider the problem of the localization in random potentials, one of

the most convenient methods is to investigate the low frequency behaviour of the

dynamical diffusion coefficient. If it vanishes for w + 0, then the system is con­

sidered to be insulating and the corresponding states are localized. On the othE~r

hand, if it is finite at w = 0, the system is ~onducting and the states are extended

Vollhardt and W8lfle (VW) proposed a microscopic formulation to calculate the

dynamical diffusion coefficient self-consistently.' In two dimensions, they have

obtained the following form of the dynamica~ diffusion coefficient in the low fre­

quency limit,

(1)

where Al and A2 are positive functions of the Fermi energy E. That is, D(O,E) = 0

irrespectively of E. This conclusion is consistent with that obtained by Abrahams,

Anderson, Licciardello and Ramakrishnan , by the renormaization group theoretical

treatment. The coefficient Al is found to be the square of the localization length

and an exponentially increasing function for large values of E.

The VW formulation has been extended by Yoshioka, Fukuyama and the present

author to the case with a weak magnetic field. They have also obtained the dyna-

mical diffusion coefficient in the form of eq. (1). The effect of the magnetic field

is to increase Al and A2 , which means that the magnetic field weakens the localiza·­

tion. This is consistent with the theory of the negative magnetoresistance by Hikami,

Larkin and Nagaoka. The fact that D(w=O) = 0 even in the presence of the magnetic

field, however, implies that the weak magnetic field does not completely destroy the

two-dimensional localization. Then a naive question arises, how about the two-dimnen­

sional Anderson localization under strong magnetic fields? In this note we discuss

about it by using a similar method as VW'.

§2. Self-Consistent Calculation of Dynamical Diffusion Coefficient

Precise investigation of the VW formulation gives us the notion that the most

essential point is the renomalization of the diffusion process. This renormaliza­

tion corresponds to take account of the diffusive motion of electrons between suc­

94



cessive scatterings by an impurity, and the diffusive motion of electrons is charac-

terized by the dynamical diffusion coefficient which should be determined self-

consistently. The same idea can be applied in the presence of the strong magnetic

fields.

In the following we take the following model of two-dimensional electrons scat-

tered by short-range impurities under a perpendicular magnetic field,

H J t e 2
dr ~ (r) [ (p + cA) 12m + u L o(r - Ri ) ]~(r) (2)

where ~t and ~ are electron field operators, A the vector potential, u the strength

of the impurity potentials distributed randomly at {R
i

}. In order to describe the

diffusion process, we consider the density relaxation function ~(g,w,E) at T = 0

with E the Fermi energy. ~ is expressed in terms of the retarded and advanced single

particle Green functions as

<p (q,w,E) = L P , (q) 'f , (q,w,E)( i., / ..211)0.0. 0.0.

'f'o.o.,(q,w,E) = L <GR(o.,S,E+W)GA(S',o.',E»PS'S(-q)

(3)

(4)

0ao.,(q) = <0.1 exp(iqr) 10.'> Ia.> IN,x> the Landau state (5)

The bracket in eq. (4) expresses the impurity average. By decomposing the average

of the product of Green functions into products of the averaged Green functions as

usual, it is straight forward to obtain a Bethe-Salpeter type of equation for aa' .

Summing up this equation with respect to a and a' and using the Ward identity which

relates the ireversible vertex corrections and the self-energies of the single-parti-

cle Green functions, we obtain the following equation,

with

-N(E} [ N(F.} the density of states at F. ) (6)

which is nothing but the correlation between the current and the density. It is

straightforward to show by using the number conservation that <p. is propotional to
J

q2</> in the small q limit. In other words, <p is written in the form,

~(q,w,E) = -N(E)/[w + iD(w,E)q2] . (8)

The coefficient D is found to have the meaning of the diffusion coefficient. In

fact, by introducing an appropriate approximation for the irreduciqle vertex correc-

tion, we can derive a relation between D and the irreducible vertex corrections.

An approximation which takes account of the effective diffusive motion between scat­
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terings leads to the following form of the self-consistent equation for D(u),E),

D(w,E) = 2n2 R. lt ni tf N(E) [(l-nitf p2 W] ') (l/21TR.2 +PWl )+njtf p2 ff W]' (wo-wl)] (9)

(l-n
i

tf p2 w
l

,)2 -n
i
li psZ wI' (1-2ni Ii P! wI')

where we have assumed that the Fermi energy lies within the lowest Landau subband

and that the subband width is much smaller than the subband splitting (i.e. the

strong field limit); n i is the impurity concentration, Q the magnetic length, p

GR(E)GA(E) and S = GR(E) + GA(E) = 2 Re[GR(E)] with the impurity averaged Green func­

tions for the lowest Landau subband GR and GA, and wo' wI and wI' are integrals in­

cluding the diffusion process. Especially Wo has the logarithmic singularity in the

small w limit. Because of this singularity D must have the form of eq. (1) as far

as S ~ 0 and we arrive at the conclusion that the states are localized except for

the subband center which is defined as the energy at which S vanishes. In the fi9U­

res below we show the frequency dependences of Re D and 1m D obtained from eq. (9),

where DO(E) = 21Ti niliN(E) and r is the sUbband width; E = 0 corresponds to the sub­

band center.
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§3. Conclusion
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By calculating self-consistently the dynamical diffusion coefficient of two-

dimensional electron system under strong magnetic fields, we showed that all the sta-

ts except for the subband center are localized, which is consistent with the numeri-

cal computation by Ando.
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