<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>6. 格子振動場における励起子の瞬間的局在と吸収スペクトルのUrback則 〈計算機実験と物理的解決 アンダーソン局在の総合的研究 料研費研究会報告 〉</td>
</tr>
<tr>
<td>Author(s)</td>
<td>豊沢 豊, Schreiber, M.</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1983), 40(4): 17-19</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91091</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher Kyoto University</td>
</tr>
</tbody>
</table>
格子振動場における励起子の瞬間的局在と吸収スペクトルのUrback則
——計算機実験と物理的解釈——

東大物性研　豊村豊，M. Schreiber

格子振動下での励起子創成光吸収スペクトルの形状に励起子の瞬間的Anderson局在がどの程度に反映するかを、計算機実験で調べた結果について報告する．[1]

吸収スペクトルの幅に比しフォノンエネルギーが充分小さい時，光学的遷移に際して格子は（動的仮想光子の相手の極向瞬間的に静止していると考えてよい）(Francl－Condor近似)．最も簡単なモデルとして，サイト(n)毎に独立に振動している調和振動子系

\[\mathbf{U} = \sum_n q_n^2 / 2 \] との間にサイト対角－絶縁相互作用

\[H_{el} = -\sum_n |n\rangle \langle n| C\langle n| \langle n| \] (1)

を持つ励起子を考える．効体格子での励起子エネルギー（最価値サイト方向ののみ移動エネルギーNを考慮する）

\[H_e = \sum_n |n\rangle \langle n| E_n \langle n| \langle n| V|n\rangle \] (2)

のサイトエネルギーがE_nのまわりに，互に独立なガウス分布: \[\text{exp}\left(-\frac{9}{4} \right) \] (D^2 = 2c^2 k_o T)で空間的にランダムにゆらっている，という仮定は問題である．

\[H_e + H_{el} \] の固有値および固有関数をE_n, \(|\psi_i\rangle = \sum_n b_i \langle n| \) とするとき，規格化した状態密度と吸収スペクトルは次のように

\[f(E) = \frac{1}{N} \sum |b_i|^2 \delta(E - E_i) \] (3)

\[F(E) = \frac{1}{N} \sum |b_i|^2 \delta(E - E_i) \] (4)

で与えられる．効体格子では固有状態

\[|\psi_i\rangle = \sum N^{-\frac{1}{2}} |\psi_i| \langle n| \] の中 \(\alpha = 0 \) のみが基底状態

が入る光学的遷移が許され，\(N \) 原子数の振動子強度子がそれに集中している（\(f_\alpha = N f_k \)）．従ってランダム

格子での状態密度の振動子強度は

\[f_i = N \langle |\alpha = 0| \psi_i \rangle^2 = |\sum b_i \langle n| \psi_i \rangle|^2 \] (5)

で与えられ，(4)が得られるのである．

\[f(E) = \frac{F(E)}{f(E)} = A \nu f_i \] (6)

は状態当たりの平均振動子強度（AOPS）を表わす．
1次元格子 \((N=30) \), 2次元正方形格子 \((N=13\times12) \), 3次元単純立方格子 \((N=10\cdot9\cdot8) \)についてモンテカルロ計算を行った結果の中、\(F(E) \)と\(f(E) \)をそれぞれ図1, 図2に示す。但し慣性は \(E=E_0 \)を原点にとり、剛体格子の励起子帯幅 \(2B \equiv 2\sqrt{V \nu} \) \((\nu \text{は最短接接触数})\)を1にとっている。また\(\nu<0 \)と決定しており、従って \(k=0 \)がバンドの底 \(E_0 = -\frac{y}{x} \)に対応する。また温度表示は、無次元の励起子格子結合定数 \(\nu = \frac{c^2/2}{\sqrt{V \nu}} \)とし、した場合のものである。\(f(E) \)のpeak \((E=E_0 \text{とする})\)の高エネルギー側は自由状態、低エネルギー側は局在状態と考えてほぼ正しい。\(f(E) \)の極エネルギー側は物理的に期待される劳倫ツ型であり、遠くでは直接遷移型で \(T_1 (E-E_0)^{-2} \)に比例する。\(f(E) \)の低エネルギー側は温度にあまりよらず、遠くでは \((E-E_0)^{-d/2} \) \((d \text{は格子の次元})\)で減少する。これに1サイトに固定した場合の\(2m \)と考える \((5) \)から簡単な得られるもので、残る束状態振動子強度が強いという巨大振動子効果である。

図1に示した場合、\((5) \)は振動係数が符号を変ずに描かれているサイト数 \(M = \vert M \vert = \sum_{l=0}^{L} (\text{はその一二次元的振幅}) \)を表し、ことに注意し、図2からその大きさを読みとるべきである。またこの図から、熱灰色に示す点 \(\nu \)は \(E_0 \)より遠くでは \(E_0 \) \((\text{確率論的からも当然})\)、ピーク \(T_1 \)で \(T \text{は} \) \(0 \text{~\sim~} 0.7 \)である。また\(f(E) \)の極エネルギー側半価点での\(\nu \)は自由状態の平均自由行程にほぼ相当することが簡単な考察から導かれ、輸送係数などと関わり吸収スペクトル\(F(E) \)のADPS f(E)は、高エネルギー側の自由状態から低エネルギー側の局在状態へ連続的に移行するだけである。

図3の半対数表示からわかる様に、吸収スペクトル\(F(E) \)の低エネルギー側尾部は指数関数的に減少する：

\[
F(E) \propto \exp \left[-\sigma \frac{E_0 - E}{k_b T} \right]
\]

\((7)\)

図4は破線からわかるように\(2(Y) \), \(3(Z) \)次元では勾配係数 \(\sigma \)は温度によらず均等である。この時簡単なスクリーニング解析から関係式 \(\sigma = S/2 \)が得られ、比例係数 \(S \)（勾配係数とよぶ）は\(2,3, \text{次元に対し} \) \(S = 1.24, 1.50 \)となる。

\((7)\)式はともと、絶縁体結晶の吸収線についておより普通的成立つ経験則——Urbach則——として、30年
図3

も前から知られているが、それに対する理論的説明の試みは既に十分とは言えないと考えられる。簡単だが、最も標準的なハミルトニアン(1)，(2)が、数値的にではあるが(7)を導き出した本稿が、ほぼ決定的なといえよう。上記の考察から、この指数関数形の尾部は、極子振動によるポテンシャルの空間的ゆらぎのため局在した励起子状態に由来することも明らかである。

以上では $V < 0$ としていたが、$V > 0$ の場合は $k = 0$ は励起子帯のトップにあり、吸収帯は極子振動によって始めて評価となる四極換え型である。この様な二極吸収帯近辺の $F(E)$ もやや一指数関数関数形を示すことが図4に示されている。

また $T = 0$ では、励起子の自由状態(root)が安定し、自己束縛状態(S)が安定する。図5に示すように、F と S は励起子の振動ポテンシャルの barrier により隔てられ、2つの極小点に相当する。従って F, S のいずれが安定であるかということが決定され、極小指数 S がその正負により関係がけられる。このことを現実の実験事実を照らし合わせてみると、殆どの場合にこれがよくあてはまることを示す。