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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

§ 1. Introduction

In this paper, we consider the vibration of crystal lattice containing impurity atoms

in two dimensions (d=2). As we shall see shortly, we can expect that in this system all of

the normal mode of the vibrations are localized, except for those the wave-lengths of which

are of order L(L: the system size). Our purpose is then to calculate the effect of such localiza

tions on the lattice thermal conductivity.

We now present the reason why those normal modes will be localized in the system.

For this we recapitulate the argument in Ref. I), in which it is shown that the excitation of

lattice wave and electronic excitation have many mathematical features in common. Let us

first consider the vibration of the lattice. Suppose that the system has a configuration of

minimum potential energy in which the i-th atom would be at RiO' And we assume that a small

displacement Xi of the atom are subject to restoring force that are linear in the relative dis

placement of nearly atoms. Then. the equation of motion for these displacement takes the

form,

ajJ ---jJ ajJ ---jJL: (1. - A0 ajJ ) x. + L: L:'.. x. = 0,
jJ l l,8 . j=l= i l) )

where

ajJ _ ajJ a,8 _ ajJ 2
1. -¢ .. /m., ' .. -¢ . ./-Im.m., 1=<v

l II l l) l) l)

(I-I)

and Xi = JmiXi with mi being the mass of the atom, cf>~tmeasuring the forces produced at the

site RiO by displacement of the atom at R jo , and w being the frequency of the normal mode.

When the system contains impurity atoms, mi depends on i at random, and X:fand/fffbecome

random variables. Next, consider the tight-binding model for the electron states of a condensed

system, in which the wavefunction for one electron is approximated as 'Ir(r) = ~ XU 1/Ji"(r-RiO );

1/Jr(r) are the atomic orbitals corresponding to the atomic levels Ef at site i. Then the ampli

tude X'f again satisfy Eq. (1.1) with "Arf3 being interpreted as EfoOlf3, ~rtas the overlap integrals

and "A as the energy of an electron eigenstate of the Hamiltonian of the whole system. The "Arf3

and ~if thus defined also become random variables when the electron system contains various

kinds of imperfections. Then, both problems of the excitation oflattice wave and the electro

nic excitation are mathematically equivalent: diagonalizing· the random matrix, A~f3 0ij + ~c;f.

There is of course a subtle difference between them: "Arf3 = 0 (ex =I (3) for the electron system,
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but "A'f3 =/= 0 (a =I~) for the lattice vibration one.

These arguments are essentially given in Ref. 1). On the other hand, according to the

recent theories on the Anderson localization for independent electrons subject to random

fields, all of the eigenfunctions of the electrons are localized in d=2 no matter how the magni

tude of the random field is small. 2-4) Moreover it is believed that this conclusion does not

depend on microscopic details of the random field*>. Thus we can consider that all of the

normal modes of the lattice vibrations which satisfy Eq. (1.1) are also localized, neglecting

the subtle difference in the matrix elements "A'f3 mentioned previously.

We now notice a special feature in the lattice vibration problem; that is, the long wave

length plane waves are not influenced by the imperfections contained in the lattice, and remain

being the normal modes even in the system considered here. This is because a plane wave

with. the wavelength k is scattered by a imperfectiqn with the cross section u--P (Rayleigh's

law in d=2) and a is vanishingly small for the waves with k--l/L. We can understand this from

Eq. (1.1), too. Indeed, multiplying mi on both sides of Eq. (1.1), we see that mi being the

origin of the disorder in Eq. (1.1) apears in the equation together with w 2 . If we now suppose

that the plane wave with k--l/L is normal mode, w should be replaced by ck. Then, for the

wave with k--l/L, the disorder arising from the imperfection in mi vanishes in the equation

to determine the behavior of the normal modes; this consistently assures the previous as

sumption, the plane wave with k--l/L being the normal mode of the system.

In this way, all of the normal modes in two-dimensional lattice containing the impurity

atoms, are expected to be localized, except for the plane waves with k--l/L (from now on

we call these the localization of the phonons, too).

The organization of this paper is as follows: in §2 we give the Hamiltonian treated

in this paper. In §3, using linear response theory, we study the distribution function of

phonon, fPA (kw), under temperature gradient, and express it in terms of response functions.

In §4, the response functions are investigated to evaluate a correction to the relaxation time

of fPA (kw) and obtain a term proportional to lnw. In § 5, using the kinetic equation, we

calculate the lattice thermal conductivity. Then we take account of terms due to phonon

phonon interaction. In §6, we give discussions on the result.

*) In fact the arguments in Ref.'3) do not make use of any special properties of the random

field, other than the characteristic length of the variations of the field being far smaller than L.
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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

§ 2. Hamiltonian

We consider a two-dimensional lattice, which posseses N atoms, of equilibrium position

RiO and a particle interaction specified by VeRi - R j ). The system Hamiltonian is then given

by

p.2 1
H=~_Z._ + ~-V (R.-R.).,

i 2m. ,#:,2 L)Z. Z. )
(2·1)

We suppose the system has perfect isotropic disorder, where the masses mi are not the same

on every equivalent lattice site. For simplicity we use the binary alloy model, where A- and

B-type atoms, of masses mA and mB, are distributed at random on a regular lattice.

Denoting mA by m and mB by m +om, we separate H to free phonon Hamiltonian

Ho and interaction Hamiltonian H' for phonon-impurity scattering. We now expand the

potential V in a power series in the small displacementoR i denoting Ri-R iO and introduce

the normal modes,

oR~Z.
_1_" a ip.Ria

- ry;r- LJqpltcplt e ,
'V lvm plt (2 0 2)

to obtain

H=Ho+H',

(2· 3)

(2·4)

(2·5)

(2· 6)H' = ~""", -i (p' +P"). Baa
2N L.J. L.J. L.J. up'l..', ..flltllPp'lt , P ..flltll e ,

a p'lt' Jf It" P P

where cpx is a unit polarization vector with X=I,2 indicating longitudinal and transverse com-

ponents, and we suppose wpx = C lt P, since we consider only temperature much lower than

Debye temperature; in Eq. (2.6), ~ indicates the summation over the impurity sites, Le. the

sites of B-type atom, and up'x',p"x" = -(om/m).(cp'l':'cp""X,). We suppose of course the com

mutation relations such as [Ppi\,qp'x'] = -iOxx'Op+p' hold everywhere.
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§3. Distribution function of phonons under temperature gradient

Let us now consider the distribution function of phonons fpACk, w) under temperature

gradient; by making use of linear response theory, we express fpA(k, w) in term of a response

function.

We assume temperature varies slowly both spatially and temporally, and there is a well

defined temperature TCr, t) at each point and each time. Then we suppose the density matrix

at time t to be as follows:*}

p(t)= exp[-ft{H+ ~oft i(t)Hi}J ,
i

(3-1)

where O~i(t) = ((3i(t)-(3)/{3«1, and Hi is the energy "density" at i-site.

Using familiar technique of linear response theory, we find, for the distribution function

of phonons,

fpl (k, w)= f~dt{tr(p(t)Fpl(k))-tr(pcFpl(k))}e- iWt

=- ~~ ~ dtCe-iw~l) i(}(t )<[Fp;.Ck, t), f ~(-k)] >~~(w),

(3 - 2)

where FPA (k) = a;_ k12, A ap+kI2, A with apA = JWpA /2 (qPA+iPpA!wPA) and a;A =JwpA/2

(q-PA -ip-PA/wpA),Pc is the density matrix of the equilibrium, and P/XC-k) is the Fourier

component of the energy current density as

with aft( _ -1 a ft r (;_
all p)-m ~R- R. cplc l flrV o VCR. ),

. }o}o P }O
}

and ~ representing the polarization index different from )...0.=2 for )",=1 and vice versa); further-

more

*) Temperatures are expressed in energy units (kB = 1), so that (3 means 1IT. For simplicity

we treat in this paper 10{3i(t)Hi as if it were the dynamical external field. In fact, the expecta

tion values of macroscopic variables given by Eq. (3.1) agree with those by more sophisticated

arguments (e.g. see § 2.12 of Ref. 6), if the temperature varies slowly.

**) The quantity jfxCk) is defined through the equation aHklat=-ikOlj~(k) with Hk = "fHi

exp (-ik' RiO)'
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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

(3-4)

For simplicity we calculate [pACk, w) only up to order O(k), assuming k-+O. We can

then put k=O in the expectation value < ..... > on the right hand side of Eq. (3.2) since

external field ~ak is already proportional to kOl
• Let us substitute Eq. (3.3) into Eq. (3.2),

and rewrite ap and a; in terms of Pp and qp~ Then Eq. (3.2) leads to

where

+ (K IR () I R I
pJ.,p' J.I W -K pJ.,p' J.I(O))V plJ.,(k, (tJ)}, (3 - 5)

and·

(3-6)

(3-7)

(3-8)

(3-9)

§4. Genelarized Boltzmann equation

Two-particle temperature Green ~s function

From Eq. (3.5) we now derive a genelarized Boltzmann equation for [PArk, w). To

do this, let us consider the two-particle ternperature Green's function,

(4-1)

As is well known, the retarded function K:A,p'x(w)' is obtained from 'JCpA,p 'X(wm ) by analytic

continuation iWm -+w+io.
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Let us now treat H' in Eq. (2.6) as a perturbation and expand JfpA,p'7-..'(r) in powers of

UpA,p'A' in Eq. (2.6). After averaging over im~urity configurations, the expansion parameter

turn out to be a quantity such as niuiA,p'A" where ni =Ni/N with N i being the number of

B-atom; we of course consider the case niU#A,p' A' «1. On the other hand the imaginary

part of the self-energy of the retarded phonon Green's function 'YA is also proportional to ni,

as is shown in Eq. (A.4), so that 'YA is another small parameter. For simplicity, we thus denote

the order of magnitude of various terms appeared in the perturbation expansion by the power

of 'YA instead of niu~J...,p'A" simply writing 'YA as 'Y.

Then JfpA,p'A'(r) yields two kinds of contribution: Jf~A,p'A'(r) and J($A,p~A'(r} (see

later). We find for Jf~A,p'A{r)

Jf;)., pl).I(Wm) = T L:{Op_pIY ).~\(p, en)Y~~' (p, en + Wm)
en

+ W )} = T L: cUap ) p' )/( i e + iw , i e ) ,m A, A n m n
en

(4-2)

Fig. 1. Diagrams for ~A,p'A'(Wm,en)' The

fulllines refer to S;~x(p,en)' where

index 1 or 2 at the end of lines re

present upper suffix aft of S; ~~;

the dotted lines refer to quantities

like niugA,p'A" The arrows on the

phonon lines are drawn in order to

perform our calculations' in the same

way as that for particle system.

2A _ 2A'

1A -lA'

+ •••" ,
""~ .'

• • •
+

v v'
2A~2A'

+ 1A~lA'
Il Il'

to: .. ,.
, I
I I...~+

--r,
I

_..L...-
+--where the second equality defines the

function Jr;A,P'A' (icn+iwm, icn), and we

proVide the definition and the evaluation

of the phonon Green's functions Y~A(P,

en) in Appendix. Figure 1 shows the

diagram for K:~,p'A'(Wm, en)' As is ob

served, KJ is the set of all contributions

in which outer line (2A) on the left hand

side is connected by phonon lines to one

(2A') on the right hand side, and similarly

line (1 A) to one (1 A'). Together with

Jfa we will later take account of the

contribution Jfb, in which outer lines

on both hands are connected diagonally by phonon lines.

Equation for ¢(w;p, e)

Let us now consider a analytic continuation of X;A,p'A'(Wm ) in upper half plane of W
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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

to obtain K~, PA'(W), Then we have

,....,

+jo(e)Jf;A, p'A,(e+w+io, e+io)-jo(e+w)Jf;A, p'A,(e+w-io, e-io)},

(4 - 3)

where fJ (c) =1/[exp(l3e) -:-1] and f de ( .. ) means principal value of the integration over c;

in the following, however, we abbreviate the sign indicating to take a principal value. As we

shall see later, only first two terms on the right hand side of Eq. (4.3) contribute to the

Boltzmann equation for fPA (k, w), so that in what follows the third and fourth terms are

neglected.

We insert Eq. (4.2) into Eq. (4.3), then substitute Eq. (4.3) into Eq. (3.5), and take

a limit w-+O, bbtaining for such contribution to fPA that comes from J<!l,

°a -1 W f- aj 22 R 11 A
jpi k , w)=-N -2.- de-a L:(C,u~ Cp, e+w)CA,j (p,e)VpA,(k, (0)

7r 1 e A/

+ C 22,R( + )C 21 ,A( )1" LVtt,V'tt'( . )C 22 ,R ( / + )CI2,A ( /AV p, e w ttA p, e· -LJ pp/ w, e v/,{! p, C W A/ tt' P,
N p/

c ) V p/ A'( k, w) ) , (4-4)

where G~,R(p, c) and G~e, A (P, c) are analytic continuation of 9 ~(p, en) in upper and

lower half plane of e, respectively.

Among contributions to the vertex part L, let us

Fig. 2. Diagram for L~~"A'A'.

consider those shown in Fig. 2. In this case, for w-+O, the

poles of two phonon Green's functions come together

from different side of the real axis. As a result magnitude

of these contributions turn out to be of order 0(1 !It).

2lJ
• i

I
I

"

2lJ
i •

r 4

Since.we consider ')'«1, these terms are dominant ones

in L and require special consideration.*) To separate out these parts of L, we single out the

contribution from all the diagrams that do not have any parallel pairs of lines with nearly

equal val~e of the poles. We denote by U this part of the function L, which has no singularity

at w=')'=O. Then,

*) The quantities K pA, p'A'( c +w+iS,e+iS) and K~A, p'A: (e+w-iS, e-iS) of Eq. (4.3) include

no such a pair of Green's function, so that they are ignored.
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L 11 , l ' 11
( • ) = U 1 A ,1' k ( . ) + ~ " U A1 ,1111 ( • )ppl W, C pp' w, c L.J pp" ([), c

N p" ~

X G 2 2 , R (/I +) G 2 2, A ( If ) L 1/ II , A' A' ( • )
II II p, C (() 1111 p, C p"p' W ,c 0

We now let </>~f: 21 (w; p, c) be the terms in the parenthesis of Eq. (4.4) and take account of

Eq. (4.5) to find

if> ~ r, 21 ( w; p, £) = G~ ~ ,R ( p, c +W ) Gil' A ( p , c ) VP A (k , W ) 0 A A'

22 , R 2 2, A 1 AA, A" A" • A" A/ • If+ G.u ( p, £ + ([) )G AA ( p, c) - L: Uppll ( W , C ) if> 2 1 , 2 1 ( (i) , p , c) ,
Np " A"

where we neglect the terms which are order 0(1') less than the first term on the r.h.s. of Eq.

(4.6), and employed the relation,

G 21 ,A( )G12,A( / ) G22 A( )G11 A( / ). AA p, c J! A' p, £ ~ AA' p, £ A' 'A' p, c , (4-7)

which holds for 1'«1.

Similarly we obtain such contribution to fpA(k, w) that come fromj{~A,pIA'(T). Then

adding </>ft 21 and one coming from j{~A,P'A' (written as </>~}, 12), and using identity, CRCA =

_(GR_GA ) / [ (GR )-1 _ (G A )-1], we have

AA' AJIi W if> ( ((); p, c ) = - s gnc - r p Aif> ( W ; P , c )

22 R 1
+2 sgncolmGv' (p, c)-- VpA(k,w)OAAI

wpA

22 R 1" AA A" A" A" AI If+ sgnc - (() pA 1m Gv' ( p, c) - L.J U pp,/ ( W; C ) if> ( W; P , c)
N p" ;(II

where sgn c is 1 for c>O and -1 for £<0, and
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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

Equation for fp"A. (k, w)

Let us now rewrite Eq. (4.8) into the equation for fp"A. (k, w). To do this we note that
~ . .

if>~w;p,e) sharply varies with respect to c and takes finite value only near e=wp"A.; we thus

separate a sharply varying part from if/"A.' (w;p,e), such that

,u.' 22 R ( ) -- AA
/
(. )¢ ( W ; p, c) = sgne • Un G A,{' p, e ¢ W ,p, e 0

After inserting Eq. (4.9) into Eq. (4.8), we multiply both sides of Eq. (4.8) by -(w/21Ti)

(atlae), and perform the integration and summation over e and X/respectively. As a result

we have

WpA 1 ~ AA ,AA
2 Ir AI N pi Upp' ( w) f p'A ( k, w)

(4 0 10)

where "{"A.' is given by Eq. (A.5).

Let us here estimate the other contribution to fp"A. (k, w Y i.e. those coming from K'R

in Eq. (3.5); figure 3, shows a set of examples. We

first consider the contribution given by the diagram

(b)

relevant to

(a)

1), -lA'

Fig. 3. Diagram for

K~p,(t).

in Fig.3(a). Since it contains a Green's function

G~~ carrying a factor of order O("{}, it yield a con

tribution to fp"A. of order O("{ 0); we write this one

as f~"A.' On the other hand the third term on the

right hand side of Eq. (4.1 0) yield to fp"A. a con-

tribution of order O("{o Inw), as we shall see later in Eq. (4.14) with Eq. (4.13); this contribu-

tion to fp"A. is just what we concerned with in this paper. Therefore we can neglect f~"A., since

when w-+O it is smaller by factor lnw than that contribution to fp"A. mentioned just above.

Contributions coming from diagrams in Fig. 3(b) are more safely neglected, since they yield

still smaller contributions to fp"A. than !;"A.'

Let us now a little bit simplify Eq. (4.1 0). We first note that as is showed in Eq.(B.12),

the function U~,,"A.\w) diverges with (p+p') -+ 0 as (p+p,)-2 when w = O. Therefore the

last term on the right hand side of Eq. (4.10) can be approximated as
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Wpl\. [ (k )N-1 ~Ul\.l\. l\.l\.( )
21"1' I -pl\. ,W ~pl ppl W. g1 h h

f\. Secondly, note that if we ne ect t e t ird term

on the right hand side of Eq. (4.10), which is indeed smaller than others by a factor of order

0("1), then we find [pl\.(k, w) to be a odd function of p. We can thus rewrite Eq. (4.10) as

1
iillf pA ( k, ill) = - f pA (k , ill) -

TR

afO -1
iill -- N VpA (k , ill) ,aillpA

(4-11)

neglecting errors of order 0("12 ), where

( 4-12)

with 'To being 1/'Y'wpy"" Furthermore, inserting Eq. (B.12) into Eq. (4.12), and performing

the integration over p with a ultraviolet cut off of order l/cl\.70 since Eq. (B.12) was derived

for IP1 +P21«1/cl\.7o, we have

1 1 r 1
(l+-ln-)

TO 7r ill TO
( 4-13)

where IF!= 1/1"111 + 1/1"121, and we used approximations C1 ==C2 and "11 ~'Y2 in the argument

of logarithms.

We note that the correction to 7R is proportional to In(w70), diverging with w~O.

This is similar to the correction, -(1 /2rrEF7)lnw7, to the relaxation time 7(W) of independent

electrons in d= 2; EF is the Fermi energy, 7 is the bare relaxation time of electrons, and W the

frequency of the electric field 4) . The latter correction to 7(W) represents the effect of weak

localization (a precursor to strong localization at w=O) of two-dimensional electrons interacting

with impurities. 3,4) Therefore, we can also regard the correction to 7R in Eq. (4.13) as a effect

of the localization of the phonons, taking account of the arguments presented in § 1, which

shows the intimate relation between the lattice vibration problem and the electron excitation

problem.

At the end of this section we rewrite Vpl\. (k,w) in terms of the temperature gradient by

making use of Eqs. (3.4) and (3.8). After carrying out a Fourier transformation with respect

to k on both sides of Eq. (4.11), we have

(4-14)
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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

where Cp"A = C"Ap/1p1. We thus have the convenient genelarized Boltzmann equation to calculate

thermal conductivity in § 5.

§5. Thermal conductivity in Callaway formulation

In this section we calculate thermal conductivity by making use of Eq. (4.14) with

Eq. (4.13).

As is well known, if we only take account of the phonon scattering by impurities, the

mean free path of the phonons diverges at long-wavelength as p-3 in two-dimension; as a

result thermal conductivity also diverges. To avoid this, following Callaway, we introduce

into Eq. (4.14) nonnal phonon-phonon scattering processes.*) After taking a limit w-+O,

we then have7)

(5-1)

Here we took account of the following condition: since normal processes conserve the total

momentum, they bring phonons only into local equilibrium described by the distribution

function, fp'}... = l/[exp {-{3(wp"A -a.p)} -1] with a chemical potential a.p·, which is de

termined later and found to be proportional to VT. Expanding the right hand side of the

expression for fp~ with respect to the chemical potential a'p, we get,

o
a 0 8f Af A=f A-aoP_P_
P P 8cu

pA
(5 0 2)

Let us now substitute Eq. (5.2) into Eq. (5.1) and denote (fP"A - f!,"A) by gp"A in order

to solve Eq. (5.2) for gp"Ao We then have

_ 8fo T
g pA - - T pA 8T (VT - CpA - a 0 p ) ,

CUpA'N
(5·3)

where 1fT= l/TN + l/TR' The quantity a is determined so that the normal phonon-phonon

scattering may conserve the total momentum. Actually, substituting Eq. (5.3) into Eq. (5.1),

multiplying the both sides of Eq. (5.1) by p, and then performing summation over p, we obtain

*) We consider the thermal conductivity at temperatures so lower than the Debye temper-

atures that the Umklapp processes are neglected· at all in this paper.

**) Here we define fp"A(w) = rfp"A(RiO,w), assuming VT being independent of RiO'
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'"-' afo T p 2 ~fo
a=- YT 2: _T_CV A-/ 2: __ T_u _

pA TN P aT pA TR TN CVpA aT

Let us now calculate the heat current by making use of expressions (5.3) and (5.4).

The energy current density r(q) obtained in Eq. (3.3) may be rewritten in terms of a and a+,

such that

c ( 0 ) '" a + '" '" al!. j3 +Ja q-- = LJ CpA CVpA a pA a pA +LJLJ aAAP a pA a pA '
pA pA j3

+ 2~ ~2>:'

lA J-:l- H ,

(b)(a)

1A -lA'

at the long-wavelength limit. Here, we have a term a;l\.ap'K., of which expectation value has

not been considered so far. However, the contribution of this term to the energy current

Fordensity turn out to be smaller than that of <atl\.ap"A> for a reason in the following.

example we give in Fig. 4 diagram for <P~1 ,21 which is

relevant to <atl\.apX>. As one observes, the outer

lines of these diagrams do not possess parallel pairs of

lines with nearly equal value of pole. We thus find that·

the lowest order diagram for ¢'21,21 (Fig. 4(a)) yield to Fig. 4. Diagram for <P2i,2i.

<a;"Aap~> a contribution of order O('y°). This is again

smaller than those correction terms to the fpl\. which appeared on the right hand side of Eq.

(4.1 0), since the latter was of order O('Y° lnw). The contributions coming from Fig. 4(b) are still

smaller than that from Fig.4(a) and are therefore ignored. These facts allow us to neglect

the second term of expression (5.5).

Let us now proceed to the calculation of the expectation value ofr. After taking en

semble average of r, we substitute Eq. (5.3) with Eq. (5.4) into Eq. (5.5) and assume the

tern perature gradient is parallel to the x-axis to get

1
X{l+ -2--

CATN(P).)

(5°6)

where we explicitly write the fact that r: TN and TR depend on p and A.

We now estimate a magnitude of TN. Supposing that among various normal processes
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three phonon scattering processes are dominant, we have

1 pT 3

maf)3
(S - 7)

where we write a for the lattice constant and () for the Debye temperature, and we used the

approximations Cl=C2 and ()1=()2 for simplicity. Equation (5.7) is easily derived from

§69 of Ref. 7) with replacing three-dimentional integrations over momentums by two

dimensional ones. We now require TN«TR'since we assumed in the fIrst place of this section

that the distribution function of phonons first relaxes to local equilibrium due to normal

processes, and then relaxes to true equilibrium due to the phonon-impurity scattering. Using

Tic instead of p in Eq. (5.7), we thus have the condition

T> > n. (om/m) 2 me 2 •
l (S - 8)

Under the condition (5.8) we have 73::. TN. Then from Eq. (5.6) we find, for thermal

conductivity,

(S - 9)

We finally substitute Eq. (4.13) into Eq. (5.9). Upon carrying out the integration over p

and taking account of the fact that we consider the temperature much lower than the Debye

temperature, we have

(I: (B;/e A ) \ T/e )) 2) 2

IC = A_A _

I: r'A ( e~ /e j) (T/e A) 5
A

I: r'A (e~/e ~) (T/e A) 71n( r'A T
3
/w)

{ 287r""",{ }x 1--- r
S I: r',{(e~/e1)(T/e,{)5 '

,(

(S-10)

where we expand the denominator of Eq. (5.9) in power series in 'Y, ignoring errors of order

O('Y); A = 1701~2(3)/641T2, the Debye temperature SA is given by cAA, where A is the mo

mentum at zone boundary, i'= CiC~'Y'l 'Yi/(ct'Y'l +C~'Y2)' and ~(n) is the Riemann zeta function.

In order to see qualitative features of Eq. (5.10), let us again ignore any dependence of the

quantities on the polarization indices. Then Eq. (5.1 0) yields
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... -..." ,, 'c ,

Here the second term in the bracket represents the effect of the localization of the phonons.

The divergence of " at w=O in Eq. (5.11) is surpressed by taking account of inelastic

scatterings in the calculation of the vertex part U~}/I.A in Appendix B. To see this, following

Ref. 8), we evaluate the contributions of the diagrams shown

in Fig. 5, in which the first diagram represents Eq. (B.12)

yielding Eq. (5.11), and the others represent the effects of Fig. 5. Diagrams for the ver-
tex part £1, which

the three phonon interactions. Then we get same expression gives the expression
for U including three

for U~},AA as Eq. (B.12) except iw in Eq. (B.12) being phonon interactions.

replaced by (iw - 1ITN). Inserting this new expression into Eq. (4.12), we find

2 A 14 iT 2 1
tc=-(l--r'T In-)

r'T 5 T
(5-12)

where we used Eq. (5.7) for TN with substituting Tic for p. In conclusion, for T<<8, we

get the correction to the lattice thermal conductivity, ~,,<xTlnT due to the localizations of

phonons, which takes place in d=2 in the l~ttice containing impurity atoms.

§6. Discussions

In this paper, we have evaluated the correction to " only due to the localizations of

the phonons, and dropped various ones other than that; we here make a comment on the latter.

Among others, we omitted corrections of order ("{'T)-1 (TNT)-I. These will be introduced,

for example, by taking account of the three phonon interaction in the calculation of ~ in

Eq. (A.2). We now recall that the correction to " due to the localizations of the phonons

is of order ('y'T)-1 (TTO)-lln (TTO)-I, and the temperature region TO>>TN is considered

in this paper. then, comparing ("{'T)-1 (TTO)-lln (TTO)-1 and (-y'T)-1 (TNT)-I, we find

that the former correction evaluated in this paper is smaller than the latter ones; this makes

it difficult to detect the correction ~,,<xT]nTexperimentally. Nevertheless, since the neglected

corrections will depend on temperature as T2
, being different from the one in question, TInT,

we can still have a hope to observe the latter, providing the temperature-dependence of" will

be precisely determined in experiments in the future.
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Appendix A

Green's jUnction

The one-particle temperature Green's functions used in this paper are defmed by

1\ T = (S;~~, ,S;~~,)
S;v/p, p';) r 21 r 22

.:/ lA' , :/ AA'

(A-1 )

Using Eqs. (2.4), (2.5) and (2.6) in Eq. (A.1), then expanding y l\A' in powers of uPA,p'A' in

Eq. (2.6), and averaging over impurity configurations, we obtain up to the lowest non-trivial

order in the impurity concentration ni,

1\ - 0 lA' ( 1 c). S;AJ.I(P' en) = 2 2 n
c n + (J) pA (l+ ); A ( en) ) - C n (J)p~

where

(A- 2)

(A- 3)

with a being the lattice spacing; Fig. 6 shows the diagram for LA. Analytic continuation

icn -*£ +i8 of LA(cn) yield the self-energy of the retarded Green's functions, L~c). Since

the real parts of L~ (c) give only small shifts of the sound velocities, we neglect them every

where. Then Eq. (A. 3) yield
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(Ao4)

where

( A'S)

with the definition

BpI being the angle between pi and x-axis. For practical purpose we neglect the momentum

dependence of u?v.:.

Appendix B

-Irreducible Vertex Part-

The "particle-hole" irreducible vertex part U are shown by Fig. 7(a) in the lowest ap-

particle" ladder diagrams as in Fig. 7(b), and

so all have same order of magnitude in 'Y.

More complicated diagrams have higher

order in 'Y compared with the contributions

of Fig. 7(b); we see this, for instance, by

calculating that the contribution of Fig. 8

(b) to U is one order of magnitude less

than that of Fig. 8(a).

PA --"-p' A . : ." Ii • t .. ,"
: +

, -. , I,
I + . I I + ...

p'A ..l-pA
I I . . ,

• I .. .... .. ! • ' . 'lIE

(b)

Fig. 7. Diagrams for U;~" AA in the lowest

order in 'Y.

+ •••+

.. ",. , ...
, ' I

" I
,'\. I.(. '" '.

(al

·\.",'., ,
,"',

of ( ... ), C

i. i'"
I ,
, I

I I

I. I •

,
I

.. I II

.. i .,

pA ..... p'A
~ +

PA -:""p' A

They are "particle-proxirnation in 'Y.

Fig. 8. (a). A contribution to U in the low
est order in 'Y. (b). A contribution to
U which is one order of magnitude
less than that of (a).

In this appendix, instead of calculating

directly the contribution of Fig. 7(b) itself,

we consider the "particle-particle" complete

(al (bl

vertex part M, of which singular part agrees with that of Fig. 7(b) in the lowest approximation

in 'Y. Then it is shown that M has a form of a diffusion propagator in general. After that we

use a perturbation expansion in 'Y to calculate various constants appeared in the diffusion

propagator.
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Let us now consider the vertex part M

shown in Fig. 9.

Fig. 9. Diagrams for the vertex part M.

+~"V:;l"V' (q, w) G~'2;'eR (p" +q, e + w) G~7/(-pl/, c)M;~p).:tt'( q, w)

(B-1)

where V is the "particle-particle" irreducible vertex part; here and in what follows we assume

to sum over any repeated Greek index and omit the summation sign. By defining a function

1/1 as

afi,A'tt'( ) _ 22,R( + ) ZZ,A( )MAtt,A'tt'( )1f'pp' q,w -GaA p+q,e wGfitt -p,e pp q,w

Eq. (B.l) yield

R ( ) A ( Att ell' elll A'tt'+ GaA P + Gfitt -p) L: Vpp'// ( q, w) 1fr p"p" ( q, w)
p"

(B-2)

(B- 3)

where the subscripts 22 on G&i,R and G&~A are dropped and p+q are denoted as p+. We

multiply the both sides of Eq. (B.3) by (GR(p+))iic} and (GA(-p));;J to get two equations;

then subtracting the former equation from the latter one, we have

( 8·4)

Here let us use two relations·:
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(B- 5)

for q, w-+O, where n cx{3=ocx{3 (2c 2jccxfJ2) (w/c-p.qjp2); this is given by using the expressions

for the free phonon Green's functions, which we find in Eq. (A.2) with~A,=0, and the general

definition for the self-energy of the one-particle Green's function. *)

(ii) The second is the relation between the self-energy and the irreducible vertex part V:

- 1 "( GR ( +) A ( )) alfil afi- N ~ ,B'al p, c OJ -Galfil -p, c Vplp' (q=O, w) (B- 6)

(a version of Ward-Takahashi indentity) which we derive by using the same technique as in

Ref. 9) and 10).

Let us insert Eq. (B.5) into Eq. (B.4); then put q=O at the first term on the right hand

side of Eq. (BA), and expand all functions multiplying \f; in powers of q up to order O(q) in

order to find the equation for \f; in the limit q-+O. After that, using Eq. (B.6), we have

(B-7)

where q.BOI.[3(p) represents the first order terms in Taylor expansion inq carried out above.

We note that B ai3 (p) has the same signature -1 as p under space invesion (Le. p-+-p); this

is because it contain operators like ap only once and the relation c,pA,=c_pA, holds in it. The

latter relation comes from reality condition for Pi and oR i in Eqs. (2.2) and (2.3). Thus we

can regard q.Bcx{3(p) as a simple correction to 8cx {3 x (2c2jccxp2)(p. qjp 2) of n cx {3' and write

n~{3=nCX{3+ q.Bcx {3(p). Substituting Eq. (B.2) into Eq. (B.7) gives

*) The self-energy ~~(c) in Eq. (A. 4) is given by putting "A=J.l in L~ (P, c).
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(B·g)

with

.:12: fi' A'( p') = 2:~, A' (p') - 2:1,fi' (-p')

In order to fmd the solution of Eq. (B.8), let us now put

(B-9)

Then we have

(S-10)

It is easy to see that, in the denominator of Eq. (B.1 0), the terms which are proportional to

q, vanish, since such terms in the summation of ~p change their sign under the replacement,

p-+-p. We therefore understand that the denominater has a form (const.) x (W+iDq2) in

general, and so the vertex M has a diffusion pole.

So far we have introduced no approximations except for taking limits q, w-+O. Let us

now evaluate the diffusion constant and the intensity of the diffusion propagator by using

perturbation theory in 'Y and neglecting the momentum dependence of .1~J.LA(P). Inserting

into Eq. (B.IO) the expressions for CR and ~R etc. obtained in Appendix A, and performing

the integration over p give, for q, w-+O.

We have then

U
AA, AA __1_ - 4r;
pp' - -.-1---1-----.:....-1---1---1--(----2-

a 2 1 (-.-2 + -2 ) I c I cu - - (- + -Ir
2

1 ) p +p' )
cI C2 2 Irll

, (B-12)

by substituting (p+p') for q in the expression for M~A,· A\q, w} which is given by Ea. (B.9)
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and (B.11); here we use the fact that, in the lowest order in "{, the singular part of M is same

as that of U.

In order to check the solution thus obtained, we may calculate directly the contributions

shown in Fig.7(a) using the "isotropic medium model'" i.e. cPQ=P and Cpt=zxp, together

with the perturbation expansion in "{;here subscripts Q and t means longitudinal and transverse

respectively ,a,nd p and z are unit vectors along p and z-axis. This calculation is straightfoward,

so that we do not show the detail explicitly but only state that the result agree with Eq. (B.11).
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