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Lattice Thermal Resistivity due to the Phonon Scattering
by Imperfection in Two-Dimensions

—Effect of the Localization of Phonons—
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Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

§1. Introduction

In this paper, we consider the vibration of crystal lattice containing impurity atoms
in two dimensions (d=2). As we shall see shortly, we can expect that in this system all of
the normal mode of the vibrations are localized, except for those the wave-lengths of which
are of order L(L: the system size). Our purpose is then to calculate the effect of such localiza-
tions on the lattice thermal conductivity.

We now present the reason why those normal modes will be localized in the system.
For this we recapitulate the argument in Ref. 1), in which it is shown that the excitation of
lattice wave and electronic excitation have maﬁy mathematical features in common. Let us
first consider the vibration of the lattice. Suppose that the system has a configuration of
minimum potential energy in which the i-th atom would be at R;5. And we assume that a small
displacement x; of the atom are subject to restoring force that are linear in the relative dis-

placement of nearly atoms. Then.the equation of motion for these displacement takes the

form,
1% — 5 V7 af =P _ .
LE( ; “ﬁ)xz + %}»ﬁ%fu x 0, (1-1)
where

af __  af af __ af, ——— 2

and X; = Jm;x; with m; being the mass of the atom, ¢,‘-}‘B measuring the forces produced at the
site Rjp by displacement of the atom at Rjo, and w being the frequency of the normal mode.
When the system contains impurity'atoms, m; depends on i at random, and X);ﬁand E‘}}ﬁbecome
random variables. Next, consider the tight-binding model for the electron states of a condensed
system, in which the wavefunction for one electron is approximated as ¥(r) = i% X YF@Ri);
Y$(r) are the atomic orbitals corresponding to the atomic levels E¥ at site i. Then the ampli-
tude X% again satisfy Eq. (1.1) with A% being interpreted as ES, 8 E‘,-}ﬁas the overlap integrals
and X\ as the energy of an electron eigenstate of the Hamiltonian of the whole system. The A&
and E%ﬁ thus defined also become random variables when the electron system contains various
kinds of imperfections. Then, both problems of the excitation of lattice wave and the electro-
nic excitation are mathematically equivalent: diagonalizing -the random matrix, A% 8+ g‘};ﬁ .

There is of course a subtle difference between them: A% =0 (a# B) for the electron system,



RERIEFn

but A¥#0 (a#g) for the lattice vibration one.

These arguments are essentially given in Ref.1). On the other hand, according to the
recent theories on the Anderson localization for independent electrons subject to random
fields, all of the eigenfunctions of the electrons are localized in d=2 no matter how the magni-
tude of the random field is small. 2~% Moreover it is believed that this conclusion does not
depend on microscopic details of the random field®). Thus we can consider that all of the
normal modes of the lattice vibrations which satisfy Eq. (1.1) are also localized, neglecting
the subtle difference in the matrix elements A% mentioned previously.

We now notice a special feature in the lattice vibration problem; that is, the long wave-
length plane waves are not influenced by the imperfections contained in the lattice, and remain
being the normal modes even in the system considered here. This is because a plane wave
with.the wavelength k is scattered by a imperfection with the cross section o~k> (Rayleigh’s
law in d=2) and o is vanishingly small for the waves with k~1/L. We can understand this from
Eq. (1.1), too. Indeed, multiplying m; on both sides of Eq. (1.1), we see that m,-_being the
origin of the disorder in Eq. (1.1) apears in the equation together with w?. If we now suppose
that the plane wave with k~1/L is normal mode, w should be replaced by ck. Then, for the
wave with k~1/L, the disorder arising from the imperfection in m; vanishes in the equation
to determine the behavior of the normal modes; this consistently assures the previous as-
sumption, the plane wave with k~1/L being the normal mode of the system.

In this way, all of the normal modes in two-dimensional lattice containing the impurity
atoms, are expected to be localized, except for the plane waves with k~1/L (from now on
we call these the localization of the phonons, too).

The organization of this paper is as follows: in §2 we give the Hamiltonian treated
in this paper. In §3, using linear response theory, we study the distribution function of
phonon, fpy (kw), under temperature gradient, and express it in terms of response functions.
In 84, the response functions are investigated to evaluate a correction to the relaxation time
of fpa(kw) and obtain a term proportional to Inw. In §5, using the kinetic equation, we
calculate the lattice thermal conducti\}ity. Then we take account of terms due to phonon-

phonon interaction. In §6, we give discussions on the result.

*)  In fact the arguments in Ref. 3) do not make use of any special properties of the random
field, other than the characteristic length of the variations of the field being far smaller than L.

— 77 -
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§2. Hamiltonian
We consider a two-dimensional lattice, which posseses V atoms, of equilibrium position
Rjo and a particle interaction specified by V(R; — R;). The system Hamiltonian is then given
by
2

_P; 1
A=S— 4+ 5+
i 2m. 2

V (R—R)- (2+1)

We suppose the system has perfect isotropic disorder, where the masses m; are not the same
on every equivalent lattice site. For simplicity we use the binary alloy model, where A- and
B-type atoms, of masses m, and mp, are distributed at random on a regular lattice.
Denoting m, by m and mg by m+6ém, we separate H to free phonon Hamiltonian
H, and interaction Hamiltonian H’' for phonon-impurity scattering. We now expand the
potential V in a power series in the small displacement 8R; denoting R;—R;, and introduce

the normal modes,

v 1- : )

5R(.1 = — a ip*Rio : ,

¢ v Nm Eqplepl € ’ (2-2)
a__ /S m ) a ip*R: . v
Pi_«/N,%pl’l pr © o (2-3)
to obtain

H:H0+H’, v - (2+4)
_1 2 ‘

HO _Ezi (pp/?.pfpl“}— (Dpl qpl q—pl )’ (2'5)

p

, 1 : ' ~i (") R 2.6

where ¢p) is a unit polarization vector with A=1,2 indicating longitudinal and transverse com-
ponents, and we suppose wpp =¢,p, since we consider only temperature much lower than
Debye temperature; in Eq. (2.6), %: indicates the summation over the impurity sites, i.e. the
sites of B-type atom, and Up'\,p"\" = ~(8m/m)-(epx-ep x'). We suppose of course the com-

mutation relations such as [ppy gp'ar] = —i6an8p+p' hold everywhere.
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§3. Distribution function of phonons under temperature gradient

Let us now consider the distribution function of phonons Jpa(k, w) under temperature
gradient; by making use of linear response theory, we express foalk, w) in term of a response
function.

We assume temperature varies slowly both spatially and temporally, and there is a well-
defined temperature T(r, ) at each point and each time. Then we suppose the density matrix

at time ¢ to be as follows:*)

p(t)=exp[=p{H+ Tog () B , (3-1)

where 88,(f) = (B:(r)-B)/B<<1, and H; is the energy “density” at isite.
Using familiar technique of linear response theory, we find, for the distribution function

of phonons,

fpr (K 0)= [ deftr(o (¢) Fpp (k) —tx( o Fi(K))} ™

1 —~j@ ) :
:‘"‘1\7‘2 S5 de(e™ 1) io(e ISLFy (ks 2), J (=01 >V 5 (o),
(3:2)
where Fpy (k) =a;_k/2, Np+k/2, A With apy = Jwpa/2 (gpa +ippa/wpy) and a;;\ =pr;\/2
(q_pr —ip_pa /wp;\), Pc is the density matrix of the equilibrium, and j5(—k) is the Fourier

component of the energy current density as

. . 2 «a af ¥ _ *%)
]Z("‘k):—l Z; (CXP qpl pk—p, 1-}-/@?1 2(117(1’)]) qp,{pk_p,l )’ (3'3)
D =1,

with afg(p)Zm_IZRc.! R/.9 7 P
R Jo

j 0 €picpi T Vs V(Rjo)’

and A representing the polarization index different from A(A=2 for A=1 and vice versa); further-

more

*)  Temperatures are expressed in energy units (kg = 1), so that S means 1/T. For simplicity
we treat in this paper Z,;6[?,-(1‘)H,- as if it were the dynamical external field. In fact, the expecta-
tion values of macroscopic variables given by Eq. (3.1) agree with those by more sophisticated
arguments (e.g. see §2.12 of Ref. 6), if the temperature varies slowly.

**)  The quantity j§(k) is defined through the equation dH,/dt=—ik%5(k) with Hy = ?H,-
exp(—ik- Ryp).
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a kaéﬂ_k((n)
Vi) = (3+4)

@

For simplicity we calculate fprlk, @) only up to order O(k), assuming k~0. We can
then put k=0 in the expectation value <. .. .. > on the right hand side of Eq. (3.2) since
external field V% is already proportional to k*. Let us substitute Eq. (3.3) into Eq. (3.2),

and rewrite g, and a'; in terms of p, and g,. Then Eq. (3.2) leads to

1
E o)——1 R R
fp,{( o) N pZ {(Kp/z,p’l’ (Q))-Kp,{’p/p(o))Vp/p (k, w)

1
‘R ’ R ’
"‘(K pl’pl ,{/(Q))-K pl,p’ 1/(0))Vp,2,(k, Q))} , (3.5)
where
R .
pr,p//p(t) - 10(t)< [q—pl(t)ppl(t) , qp’l’ p_p,l,]> ’ (3.6)
'R .
Kp/l,p’l’(t)— 10 (t)<[q_pz(t)])px(t) ’ qp/p P_p/}_/]> ’ (3'7)
and -
Vpi(ks @) =Z ey pV (o) . (3-8)
Vorlk, ©) =5 a3 p V(). (3+9)
a

§4. Genelarized Boltzmann equation

Two-particle temperature Green’s function

From Eq. (3.5) we now derive a genelarized Boltzmann equation for fpa(k, w). To

do this, let us consider the two-particle temperature Green’s function,

X - "
pA, p’l’(T) < T(q_p,l( T)Pp,z(T)v 9p’ ¥ p~p'l’ )> . v (4-1)

As is well known, the retarded function Kg;\’pfx(w)‘ is obtained from Hpp pn(ws,) by analytic

continuation icw,, >w+i8.
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Let us now treat H' in Eq. (2.6) as a perturbation and expand Hpn,p'a’(7) in powers of
Upapn in Eq. (2.6). After averaging over impurity configurations, the expansion parameter
turn out to be a quantity such as n,-up%\,pw, where n; = N;/N with N; being the number of
B-atom; we of course consider the case n,-u,%\,p';\' <<1. On the other hand the imaginary
part of the' self-energy of the retarded phonon Green’s function 7, is also proportional to n;
as is shown in Eq. (A.4), so that vy, is another small parameter. For simplicity, we thus denote
the order of magnitude of various terms appeared in the perturbation expansion by the power
of v, instead of n,-ug;\,p')\', simply writing v, as 7.

Then Hp) p'y(7) yields two kinds of contribution: }Cg}\’p';\'(T) and JCg;\, (1) (see
later). We find for #Hpy pn'(7)

@) =TS0, S (b e )CE (b e, + o))
eﬂ

—] 22 , v . 12 22
+ N ¢ ii(l’, e )& 0P €, +wm)LU:p,u # (0 5 ¢ )G w /(P e )& 7 (Phe,

+mm)}:T§UZ[;X, P,/V(ien_*_iwm’ ien)’ (4.2)
where the second equality defines the e e e e
+ ' + : ! + 3¢ +
function ﬂ‘gx,p';\' (ientiwy,, ie,), and we L L L
provide the definition and the evaluation
. v \,l
of the phonon Green’s functions 5% (p, Il 2
. . ) —— 1 1 ~—1
en) in Appendix. Figure 1 shows the “ 1 YT

diagram for K;X,p’x'(wm, €,). Asis ob- Fig. 1. Diagrams for JC“p;\’pN(wm,e,,). The
full lines refer to g‘{%{p,en), where

served, K7 is the set of all contributions ]
index 1 or 2 at the end of lines re-

in which outer line (2\) on the left hand present upper suffix a8 of §<}x\§,;

side is connected by phonon lines to one the dotted lines refer to quantities
. 2

(2X) on the right hand side, and similarly like nupp p.  The arrows on the

line (1A) t IN). Togeth ith phonon lines are drawn in order to
ine 0 one . ogether wi B
( & v perform our calculations in the same

H? we will later take account of the way as that for particle system.
contribution H?, in which outer lines
on both hands are connected diagonally by phonon lines.

Equation for ¢(w;p, €)

Let us now consider a analytic continuation of ¥(z) p'a’(w,,) in upper half plane of w
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to obtain K“pli pr(@). Then we have

K}Z,If, pr @)= —fde {(FCet @)= 1" (e))lfpx paletatio, e —is)

+ X gy gl et otis, e+i5)-—f0(e+w)u7f;z, prl et id, e—id)},
(4-3)

where 10 (¢)=1/[exp(B¢)—1] and fde (- -) means principal value of the integration over ¢;
in the following, however, we abbreviate the sign indicating to take a principal value. As we
shall see later, only first two terms on the right hand side of Eq. (4.3) contribute to the
Boltzmann equation for fy) (k, w), so that in what follows the third and fourth terms are
neglected.

We insert Eq. (4.2) into Eq. (4.3), then substitute Eq. (4.3) into Eq. (3.5), and take

a limit w—0, obtaining for such contribution to fp\ that comes from K%,

Fpi(ks @) = fde Z<G§§;R<p, e+ )Gy (b, OV (k. ©)

1 4
+ 6% (p e+ w) G4 (p, e)ﬁg,L;’; “w36)G2HN (P et 0) G302 ()
E)Vp’l’(k7 (Z)))’ (4'4)

where G¥R(p, ¢) and G4 (p, ¢) are analytic continuation of Cha B, €,) in upper and
lower half plane of e, respectively.

Among contributions to the vertex part L, let us

consider those shown in Fig. 2. In this case, for w0, the Su
. 1 1
1
poles of two phonon Green’s functions come together «;u—<—~2—;--
1Y

from different side of the real axis. As a result magnitude '
of these contributions turn out to be of order 0(1/y). Fig. 2. Diagram for Ll}’\}l;"m
Since we consider y<<1, these terms are dominant ones

in L and require special consideration.®) To separate out these parts of L, we single out the
contribution from all the diagrams that do not have any parallel pairs of lines with nearly

equal value of the poles. We denote by U this part of the function L, which has no singularity
at w=v=0. Then,

*)  The quantities Kp;\ p (€ +wtid et+id) and Ky pa (etw—id, €-i8) of Eq. (4.3) include
no such a pair of Green’s function, so that they are ignored.



FHEIERN

Lpg M wse) = Ul p ¥ ¥ (0 e>+;pﬂz Upp'”" (@3 ¢)

(4+5)

XGEoR(p e +w)GilA(p ) Ly ¥ ¥ (wse).

Py

We now let ¢%‘1}‘ 21(w; p, €) be the terms in the parenthesis of Eq. (4.4) and take account of
Eq. (4.5) to find

631 21(@5p, ) =GR (p, e +0) Gl (p.e) Vpa (ks w) by

+022 R(p,6+0))622 A(p’e)FZ U;,//AIM((U;e)¢§”1f,21((‘);p”’5) ,
pll lll

(4+6)
where we neglect the terms which are order O(y) less than the first term on the r.h.s. of Eq.
(4.6), and employed the relation,

Civ A (p, )Gyl (phe) = G374 (p.e) G (p'se) (4-7)

which holds for y<<1.
Similarly we obtain such contribution to fpj (k, w) that come from Jfg;\, pn(7). Then
adding ¢§‘1}‘ »1 and one coming from J(’g;\’ pv (written as ¢»72‘i\ 1), and using identity, GRGA =

—(GR-GM) /[ (GR*)™* — (G4)™'], we have

0" (w3p,e)=— sgne°r,,x¢ "(ospre)

+25gne°ImG%%’R(p,€) Vp,z(k;w)axl’

(')pl

1 n n 7
+Sgn5~o)px[mG%’R(p, e)— 2 U;},//’Z /z((t’;5)¢'Z 1 (w; p’e)
p//x// .
(4-8)

where sgn ¢ is 1 for €0 and —1 for ¢<0, and

ZI / 4
Y(woipe) =651 s (@;pre) T o5l 1, (w5poe) .
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Equation for fp\ (k, w)

Let us now rewrite Eq. (4.8) into the equation for fp) (k, w). To do this we note that
h r .
¢'(\w p.¢) sharply varies with respect to e and takes finite value only near e=wpy; we thus

separate a sharply varying part from ¢M'(w;p,e), such that
6" (w;p,e)=sge-ImGi3F(p, )" (wsp,e) . (4-9)

After inserting Eq. (4.9) into Eq. (4.8), we multiply both sides of Eq. (4.8) by —(w/27i)

(8°/9¢), and perform the integration and summation over ¢ and Nrespectively. As a result

we have

. 3 0

10f pr (ks @) = 0p72fpi (k> 0)— i Ny (ko)
@
p/l

° ) (4-10)
— - pr 22,22
2ri] w5 Ve (@) S (ks 0)

where 7y, is given by Eq. (A.5).
Let us here estimate the other contribution to fpy (k, w)' ie. those coming from K'R
in Eq. (3.5); figure 3, shows a set of examples. We |

first consider the contribution given by the diagram

. . . . . N . 2% —=—2X" '
in Fig.3(a). Since it contains a Green’s function . 2 L 2%

aB 1) ——e—1)! 1A 1AY
G?\X
tribution to f,, of order 0(y°); we write this one

carrying a factor of order 0(y), it yield a con- (@) (b

Fig. 3. Diagram for relevant to
as ];,';\. On the other hand the third term on the Kpp(t).

right hand side of Eq. (4.10) yield to f,, a con-
tribution of order 0(y° Inw), as we shall see later in Eq. (4.14) with Eq. (4.13); this contribu-
tion to fpy is just what we concerned with in this paper. Therefore we can neglect fp'h, since
when w0 it is smaller by factor Inw than that contribution to f,) mentioned just .above.
Contributions coming from diagrams in Fig. 3(b) are more safely neglected, since they yield
still smaller contributions to fpx than fp.

Let us now a little tit simplify Eq. (4.10). We first note that as is showed in Eq.(B.12),
the function U;i,‘:’M(w) diverges with (p+p’) >0 as (p+p')~2 when w =0. Therefore the

last term on the right hand side of Eq. (4.10) can be approximated as
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-7 Alf_px(k WINTIZULEM (@),

Secondly, note that if we neglect the third term
on the right hand side of Eq. (4.10), which is indeed smaller than others by a factor of order

0(7), then we find fpa(k, w) to be a odd function of p. We can thus rewrite Eq. (4.10) as

1 af°
iwfp,z(k,w)Z—fpl(k,w)—m) / N_le,l(k,co), (4-11)
TR C‘)p/l
neglecting errors of order 0(y2), where
1 1 o ,
—=—+ —ZW“W), (4-12)

TR To 217,1[

with 7o being 1/’)"«),,?\. Furthermore, inserting Eq. (B.12) into Eq. (4.12), and performing
the integration over p with a ultraviolet cut off of order 1/c)7q since Eq. (B.12) was derived
for Ipy+p,1<<I/exty, we have

1 1 7 1
—=— (1+—1In

TR TO T (I)TO

) > (413)

where 1/7=1/ly 1+ 1/ly,|, and we used approximations ¢; =c, and y;=7v, in the argument
of logarithms.

We note that the correction to 7p is proportional to In(wrg), diverging with w-0.
This is similar to the correction, —(1/2aEF7)lnwr, to the relaxation time 7(w) of independent
electrons in d=2; Ef is the Fermi energy, 7 is the bare relaxation time of electrons, and w the
frequency of the electric field®. The latter correction to 7(w) represents the effect of weak
localization (a precursor to strong localization at w=0) of two-dimensional electrons interacting
with impurities.>* Therefore, we can also regard the correction to 7 in Eq. (4.13) as a effect
of the localization of the phonons, taking account of the arguments presented in §1, which
shows the intimate relation between the lattice vibration problem and the electron excitation
problem.

At the end of this section we rewrite Vpa (k,w) in terms of the temperature gradient by
making use of Egs. (3.4) and (3.8). After carrying out a Fourier transformation with respect

to k on both sides of Eq. (4.11), we have

1of p2 (R — -1 -1 afo
p iO’AQ))_Tprl(RiO’w)+vT°cplN 3T (4-14)
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where cpp = c\p/ lpl. We thus have the convenient genelarized Boltzmann equation to calculate
thermal conductivity in §5.
§5. Thermal conductivity in Callaway formulation

In this section we calculate thermal conductivity by making use of Eq. (4.14) with
Eq. (4.13).

As is well known, if we only take account of the phonon scattering by impurities, the

3

mean free path of the phonons diverges at long-wavelength as p~° in two-dimension; as a

result thermal conductivity also diverges. To avoid this, following Callaway, we introduce
into Eq. (4.14) normal phonon-phonon scattering processes.*) After taking a limit w—0,

we then have?

*% )
P 0 __ra _,0
VT ep fo _ fpifpi " prT fpi

(5-1)
orT N R

Here we took account of the following condition: since normal processes conserve the total
momentum, they bring phonons only into local equilibrium described by the distribution
- function, fpx =1/[exp {—B(w,,}\ —a-p)} —1] with a chemical potential a-p, which is de-
termined later and found>to be proportional to V7. Expanding the right hand side of the

expression for f3 with respect to the chemical potential ap, we get,

0
a 0 Of o
=f  —q- p
fpl fpl a paa)px (5'2)

Let us now substitute Eq. (5.2) into Eq. (5.1) and denote (fn— fgk) by gpa in order
to solve Eq. (5.2) for gpy. We then have

~

of"
9pz__7pz—aT(VT'cpz_“'P ) (5-3)

()]} T
DPA'N

where 1/7=1/1y +1/7g. The quantity a is determined so that the normal phonon-phonon
scattering may conserve the total momentum. Actually, substituting Eq. (5.3) into Eq. (5.1),

multiplying the both sides of Eq. (5.1) by p, and then performing summation over p, we obtain

*)  We consider the thermal conductivity at temperatures so lower than the Debye temper-
atures that the Umklapp processes are neglected-at all in this paper.
**) Here we define fpa(w)= ?fp;\(R,-O,w), assuming V7T being independent of R;g.
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0 ,;, 2 a0
/5 P ;9
pt TRy @ oT

a=—pry w2
prTy PL 3T

(5-4)
p?

Let us now calculate the heat current by making use of expressions (5.3) and (5.4).
The energy current density j(q) obtained in Eq. (3.3) may be rewritten in terms of ¢ and a*,
such that

(5+5)

. € . a + af p o+
Ja(lI"O)“Excpx @pr 2 pa apx+5%aup Zpr %pi

at the long-wavelength limit. Here, we have a term a;;\apx, of which expectation value has

not been considered so far. However, the contribution of this term to the energy current
density turn out to be smaller than that of <agyap,> for a reason in the following. For

example we give in Fig. 4 diagram for ¢y »; which is

relevant to <a;5\apx>, As one observes, the outer 2% e 211 23 2%
+ L

lines of these diagrams do not possess parallel pairs of I —— 1 m = e
{a) (b)

lines with nearly equal value of pole. We thus find that -
the lowest order diagram for ¢5; 54 (Fig. 4(a)) yield to Fig. 4. Diagram for ¢%; 5.
<appap> acontribution of order 0(y°). This is again
smaller than those correction terms to the fp» which appeared on the right hand side of Eq.
(4.10), since the latter was of order 0(y° Inw). The contributions coming from Fig. 4(b) are still
smaller than that from Fig. 4(a) and are therefore ignored. These facts allow us to neglect
the second term of expression (5.5). -

Let us now proceed to the calculation of the expectation value of j°. After taking en-

semble average of j¢, we substitute Eq. (5.3) with Eq. (54) into Eq. (5.5) and assume the

temperature gradient is parallel to the x-axis to get

0
<]X>_-—§ VXTEOPXT(p/Z)'gf—CX

. % (TP /ey (P)) @y (3 70T)
pl ’

(p)) 2 F(P ) /g (P ) 7y (B 2) ) (B ¥y ) (9F%0T)
pl I4

x {1+ } (5-6)

2
C’ITN

where we explicitly write the fact that 7, 7y and 7p depend on p and A.

We now estimate a magnitude of 7,;,. Supposing that among various normal processes
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three phonon scattering processes are dominant, we have

1 T3 '
-~ (5+7)
TN ma 0

where we write a for the lattice constant and 6 for the Debye temperature, and we used the
approximations ¢; =c¢, and 6, =6, for simplicity. Equation (5.7) is easily derived from
8§69 of Ref. 7) with replacing three-dimentional integrations over momentums by two-
dimensional ones. We now require 7y <<7g'since we assumed in the first place of this section
that the distribution function of phonons first relaxes to local equilibrium due to normal
processes, and then relaxes to true equilibrium due to the phonon-impurity scattering. Using

T/c instead of p in Eq.(5.7), we thus have the condition
T7>> ni(am/m)zmcz . ' (5-8)

Under the condition (5.8) we have 7= 7). Then from Eq. (5.6) we find, for thermal

conductivity,

1,1 0 2,1 -1 2 0
r=ls Z}mI,x(af/aT)} /5% g (@p/e3) (9F70T) (5-9)
P p
We finally substitute Eq. (4.13) into Eq. (59). Upon carrying out the integration over p
and taking account of the fact that we consider the temperature much lower than the Debye

temperature, we have

(2 (8,/e D(TO)D?
A

k= A
= r(05/c4) (T/8,)5
Y1, (055 (1/6,) " In(r, T%w)
_ 287 Fr 2
5 z r (85 ) (1/8,)°

x {1 }s (5-10)

where we expand the denominator of Eq. (5.9) in power series in v, ignoring errors of order
0(y); A=1701¢%(3)/64n%, the Debye temperature ©, is given by cyA, where A is the mo-
mentum at zone boundary, ¥'= ¢3¢3v172/(c3v1#c375), and {(n) is the Riemann zeta function.
In order to see qualitative features of Eq. (5.10), let us again ignore any dependence of the

qﬁantities on the polarization indices.. Then Eq.(5.10) yields
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3
r'T

24 . l4=x )
—)) . (5-11)

1
r'T ( )

>
R

r'T%1n (

Here the second term in the bracket represents the effect of the localization of the phonons.

The divergence of k at w=0 in Eq. (5.11) is surpressed by taking account of inelastic
scatterings in the calculation of the vertex part U;‘Q’IM in Appendix B. To see this, following
Ref. 8), we evaluate the contributions of the diagrams shown
in Fig. 5, in which the first diagram represents Eq. (B.12)

yielding Eq. (5.11), and the others represent the effects of ~ Fig. 5. Diagrams for the ver-
tex part M, which

the three phonon interactions. Then we get same expression "~ gives the expression
for U including three
for U;;;’,M as Eq. (B.12) except iw in Eq. (B.12) being phonon interactions.

replaced by (iw — I/7p). Inserting this new expression into Eq. (4.12), we find

P24 g _14r

r'T o

r'Tzlnl?) (5+12)

where we used Eq. (5.7) for 75 with substituting T/c for p. In conclusion, for T7<<0, we
get the correction to the lattice thermal conductivity, AkaTIn T due to the localizations of

phonons, which takes place in d=2 in the lattice containing impurity atoms.

§86. Discussions

In this paper, we have evaluated the correction to k only due to the localizations of
the phonons, and dropped various ones other than that; we here make a comment on the latter.
Among others, we omitted corrections of order (¥T)~! (ryT)~!. These will be introduced,
for example, by taking account of the three phonon interaction in the calculation of ¥ in
Eq. (A.2). We now recall that the correction to k due to the localizations of the phonons
is of order (YT)™! (T19) 'In(Try)™1, and the temperature region 7¢>>7y is considered
in this paper. then, comparing (YT)~! (Try)!In (Try)~! and (vT)™! (ryT1) 7!, we find
that the former correction evaluated in this paper is smaller than the latter ones; this makes
it difficult to detect the correction AkxTInT experimentally. Nevertheless, since the neglected
corrections will depend on température as T 2, being different from the one in question, T1nT,
we can still have a hope to observe the latter, providing the temperatufe—dependence of k will

be precisely determined in experiments in the future.



Lattice Thermal Resistivity due to the Phonon Scattering by Imperfection in Two-Dimensions

Acknowledgment
The author wishes to thank K. Miyake, K. Yamada, Y. Kuroda and H. Takagi for discus-

sions.

Appendix A

Green’s function

The one-particle temperature Green’s functions used in this paper are defined by

21 22
T

11 12
A ) v, Taw
gul(P’P; T)=

_ <T(qp/l<7) qp’i’)>’ <T(qp,1(7)pp/1/)>. (A 1
<T(ppl(7)qp/1/)>’ <T(PPK(T)PP/,{/)>

Using Egs. (2.4), (2.5) and (2.6) in Eq. (A.1), then expanding C v in powers of upy pr in
Eq. (2.6), and averaging over impurity configurations, we obtain up to the lowest non-trivial

order in the impurity concentration n;,

g ( — O 1 €a
A /p’e ): ? (A..2)
AR 6121‘*‘(012)1 (1+Zl(5n)) _6n (l)pi
where
_0)2/1/
2(6)—na2f _rr (A+3)

@ >2 DAp Ty

with a being the lattice spacing; Fig. 6 shows the diagram for ¥,. Analytic continuation

“PH » Py e . D
M = M + M M + M M

1 / \
P > PiA { )

Fig. 6. Diagrams for Z,(e,).

ie, >¢ +i® of Za(e,) yield the self-energy of the retarded Green’s functions, Te). Since

the real parts of 2§ % (e) give only small shifts of the sound velocities, we neglect them every-
where. Then Eq. (A. 3) yield



FRERIEFD

R — —_— ’
where
2 2
o n;,a ull Us,
7] = ( + y o, .
N (A-5)

with the definition

57)}, d.0 ’

2 2 a g p/ «
= () Dap epa S o BX Py

6, being the angle between p’ and x-axis. For practical purpose we neglect the momentum

dependence of u$y'.

Appendix B
—Irreducible Vertex Part—

The “particle-hole” irreducible vertex part U are shown by Fig. 7(a) in the lowest ap-

proximation in y. They are *particle- PA »rep'A — ——r——
. o iR P
particle” ladder diagrams as in Fig. 7(b), and PA weprh =l N
so all have same order of magnitude in 7. @
More complicated diagrams have higher A L S A A

p'A —>i>-p)\ v-:-—b—-:»- -

order in vy compared with the contributions (b)

of Fig. 7(b); we see this, for instance, i)y Fig. 7. Diagrams for U;‘};,M in the lowest
calculating that the contribution of Fig.8 order in .
(b) to U is one order of magnitude less e ot
than that of Fig. 8(a). TS AN
(a) (b)

In this appendix, instead of calculating
Fig. 8. (a). A contribution to U in the low-

directly the contribution of Fig. 7(b) itself, est order in y. (b). A contribution to
U which is one order of magnitude
we consider the “particle-particle” complete less than that of (a).

vertex part M, of which singular part agrees with that of Fig. 7(b) in the lowest approximation
in v. Then it is shown that M has a form of a diffusion propagator in general. After that we
use a perturbation expansion in y to calculate various constants appeared in the diffusion

propagator.
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Let us now consider the vertex part M ~pu >

M = lv| + |v M
shown in Fig. 9. ’ P A m——p'A -

Fig. 9. Diagrams for the vertex part M.

2 l, 4 VN
Myt " (g, 0) =Vt (g, o)

A l//
+%]”V;p“,’f (q, co)Gg R(p’+q, 5+(I))G)2/z’y (—p",E)Mf,Z},/”(q, o)

(B-1)
where V is the “particle-particle” irreducible vertex part; here and in what follows we assume

to sum over any repeated Greek index and omit the summation sign. By defining a function

Y as

Vot (4 0) =GB R(pta, c+0)GHA(=p, )My (g, 0) , (B:2)
Eq. (B.1) yield
ﬁ /2 ,{ 7,7
Vop” “Ug, ) =G6% (p,) j,?’ﬂ(—p)V“f’/“(q, ®)
o
p (g ®) ; (B+3)

+G§l(p+)G,§1ﬂ (_p)E/;V;Z,”f (g @) wi’/};/ V!

where the subscripts 22 on G22 R and Gifg’A are dropped and p+q are denoted as p,. We
multiply the both sides of Eq. (B.3) by (GR(p+ )z and (G4 (-p))a4 to get two equations;

then subtracting the former equation from the latter one, we have
—SH{(GR(p 5L — (GA(—p)) 3} vioni " (g, @)
P B
Z%:(fox(pﬁ—"Gf (—-p))Vm Y g, @)

+Z(GRX(p+)—G (=75t (@ )3 " (@ @) . (B

Here let us use two relations:
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() (¢R(p))op —(6*(—p))s

=—Qup HEE,(ptq, eto) =S4, (—p, ) , (B+5)

for q, w—0, where Qq5=84p (2e%/cop?) (w/e—p-q/p?); this is given by using the expressions
for the free phonon Green’s functions, which we find in Eq. (A.2) with- 2, =0, and the general
definition for the self-energy of the one-particle Green’s function.*)

(ii)) The second is the relation between the self-energy and the irreducible vertex part V:

Zga(p> €+CU) _Zgﬁ(—p, 6)

:_;lv_;,:‘} (Gg,a,( p> ctow) _Gf/ﬁl( —p> ¢) )Vg,lf,” Fg=0, o) , (B+6)
(a version of Ward-Takahashi indentity) which we derive by using the same technique as in
Ref.9) and 10).

Let us insert Eq. (B.5) into Eq. (B.4); then put ¢g=0 at the first term on the right hand
side of Eq. (B.4), and expand all functions multiplying ¢ in powers of g up to order 0(g) in
order to find the equation for ¢ in the limit ¢—0. After that, using Eq. (B.6), we have

1 v
V5 (Qapta *Bas(p)) vy’ *(q, »)

- 25/1/( p’) _lei/ﬂ/( —p') > (8’7)

where ¢-Bgg(p) represents the first order terms in Taylor expansion in g carried out above.
We note that B,z (p) has the same signature —1 as p under space invesion (i.e. p~>—p); this
is because it contain operators like 9, only once and the relation €pa=¢—pa holds in it. The
latter relation comes from reality condition for P; and 6R; in Eqs./(2.2) and (2.3). Thus we
can regard ¢-Bog(p) as a simple correction to 845 x (2¢2/cop? )(p- 4/p?) of Qqp and write
Q'QB=QO[3+ q-Byg(p). Substituting Eq. (B.2) into Eq. (B.7) gives

*)  The self-energy E}f(e) in Eq. (A.4) is given by putting A=u in Eﬁ (p, €).
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%%}Q’ R (D) GA (—p)MBs V" (q, 0) =45 ,(p') . (B-8)

with

AZﬂw(p') :Zﬁflll (p,) _Zf/ﬂ/_(_p/)

In order to find the solution of Eq. (B.8), let us now put

Mpsr ™ (g 0) =45, (p)A(g, ©)4T ., (P') . | (B+9)

Then we have

4(g @) =((/N) 50, 65 (IGH,(—p)AZ 5 (2T (B+10)

It is easy to see that, in the denominator of Eq. (B.10), the terms which are proportional to
q.vanish, since such terms in the summation of Z, change their sign under the replacement,
p—~>—p. We therefore understand that the denominater has a form (const.) x (w+iDg?) in
general, and so the vertex M has a diffusion pole.

So far we have introduced no approximations except for taking limits q, w—0. Let us
now evaluate the diffusion constant and the intensity of the diffusion propagator by using
perturbation theory in v and neglecting the momentum dependence of AZ,,(p). Inserting
into Eq. (B.10) the expressions for GR and Z® etc. obtained in Appendix A, and performing

the integration over p give, for g, w—0.

1 1 1 1

A(q,w):a_z{l(—+—)|e|w——( — 4+ — ) ¢*yt. (B-11)
01 02 lll l 2|
We have then
1 — 4y
Upp'' = - 2 , (B12)
- 2 VU T R 1 1\ 2
a 1(0% )Islco (lrll +|72|)(p+p)

by substituting (p+p’) for ¢ in the expression for M;‘p)‘:’ Mg, w) which is given by Ea. (B.9)
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and (B.11); here we use the fact that, in the lowest order in v, the singular part of M is same
as that of U.

In order to check the solution thus obtained, we may calculate directly the contributions
shown in Fig. 7(a) using the “isotropic medium model” i.e. epo=P énd epr =ZxP, together
with the perturbation expansion in 7; here subscripts £ and # means longitudinal and transverse
respectively, Aa.nd p and £ are unit vectors along p and z-axis. This calculation is straightfoward,

so that we do not show the detail explicitly but only state that the result agree with Eq. (B.11).
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