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ABSTRACT

We report data on non linear conductivity and both slow

and fast voltage oscillations in the blue bronzes K
O

.
30

Mo0
3

and

Rb O. 30Mo0 3 . These properties are attributed to the depinning of the

CDW. The data obtained on Rb O• 30 Mo0 3 are very similar to those ob­

tained previously on KO• 30 Mo0 3 . We have studied in details the slow

phenom~na, time dependent effects. voltage pulses or coherent oscilla­

tions both in "pure" and doped KO.
30

Mo0
3

. While pulses are found in

the "pure" samples, the doped ones rather show oscillations, more or

less coherent depending on the cooling process with or without a dc

current. We propose that the slow phenomena are related to the CDW

domain boundaries,discommensurations or dislocations in the CDW

lattice. We suggest that possible diffusion of defects, possibly im­

purities, coupled either with the CDW modulation or with the domain

boundaries, may account for the time dependent and memory effects.

*Laboratoire Associe a l'Universite Scientifique et Medicale de

Grenoble.
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bronze KO. 30Mo0 3
such as (TaSe 4 )Z

conduction band,

I INTRODUCTION

While the transition metal trichalcogenides such as NbSe
3

and TaS
3

have been known now for several years to exhibit non linear

conductivity ~ttributed to charge density wave (CDW) transport (1),

similar properties have now been found also in the molybdenum blue

(Z) and in the transition metal tetrachalcogenides,

I (1). In the family of the molybdenum bronzes, the

built on hybridized p -4d orbitals, is partially
TI

filled due to charge transfer from the outer s electrons of the alca-

line metal, leading to a metallic behaviour. KO. 30Mo0
3

is at room

temperature a quasi-one dimensional metal and these properties are

well accounted for by the presence in the crystal structure of infi­

nite chains of Mo0 6 octahedra parallel to the direction of highest

conductivity (monoclinic b-axis) (3). It has been shown that the me­

tal to semiconductor transition which takes place at 180 K, is a

Peierls transition and x-ray studies have established that the semi­

conducting phase is incommensurate with a wave vector component along

b,qb =(0.74 ± O.OI)b* at 110 K (4). Recent neutron scattering data

have corroborated this result and established that qb is incommensura­

te down to 6 K (5).

In the incommensurate phase, detailed studies of the dc

voltage-current characteristics have shown that the conduction is non

linear above a sharp threshold electric field Et , with a switching

from the ohmic regime to the non ohmic one ; Et is typically of the

order of 100 mV/cm at 77 K. ?or dc current close to or larger than the

threshold value, an anomalously large noise voltage is found with both

fast oscillations with frequencies F in the range of 10 kHz and slow

pulses with a time scale of typically Is (2). The non linear proper­

ties have been attributed, as in NbSe
3

and related compounds, to the

depinning of the incommensurate CDW by the electric field. It has also

been shown that the noise frequency F is proportional to the excess

current density jCDW carried by the CDW (6). This is also consistent

with results found in NbSe3 and accounted for by a classical model

describing the CDW as a particle sliding in a periodic potential. In

the case of KO• 30Mo0
3

, the existence of hysteresis and time dependent

effects associated with long relaxation times (1 hour or longer) has

also been established (6). These results point out the importance of
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metastability in the CDW transport. We had also suggested that they

could be due to the motion of domain walls, possibly discommensura­

tions.

The experimental data on charge density wave transport

have lead to an intense theoretical work. While the classical model

(1) (7) was consistent with the linear relationship between F and

jCDW and predicted that F/jCDW = l/neA where n is the condensed

electrons density and A a characteristic length found to be the

superlattice period, it did not account for the exponential dependence

of.cr on the electrical field. Bardeen proposed therefore a model in

which the depinning of the CDW is described by a Zener type tunne­

ling through a gap at the Fermi surface determined by the pinning

frequency (8). More recently, Barnes and Zawadowski (9) proposed a

Josephson type theory in which the two macroscopic quantum states

are the two components q and -q of the incommensurate CDW. Impurity

scattering would induce in such a system an energy density periodi~

in space with a period A/2 and therefore quantum oscillations with

frequencies F v/(A/2) where v is the drift velOCity of the CDW ;

this would correspond to a ratio F/jCDW = 2/neA. This value may be

consistent with most recent experimental data (10). In a different

approach, Klemm and Schrieffer (11) have proposed a microscopic

theory supporting the classical model and accounting for the exis­

tence of a threshold field and of characteristic noise frequencies.

All previous models are based on the fact that the voltage

oscillations and noise are related to bulk properties of the sample.

Some experimental data are however ~ossibly not inconsistent with a

local mechanism the noise voltage would then be induced at the con­

tacts (12). Ong et al have proposed that the oscillations could be

created by a sheet of phase vortices located under the contacts (13).

At the present time, the local or non local origin of the CDW conduc­

tion noise is not clear.

Another important aspect of the experimental data on CDW

transport is the existence of hysteresis, time-dependent effects and

metastability, as previously reported by Gill (14). However, most of

the experimental and theoretical studies are rather poor in this res­

pect. Only the time dependent mean field theory developed by
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D.S. Fisher accounts for an hysteretic behavior close to the thres-

hold (15) in this theory. the CDW is considered as a deformable

medium and not as a rigid macroscopic object.

In section II of this article we first describe the expe­

rimental techniques. In section III. we report data obtained on the

Rubidium blue bronze Rb O. 30Mo0 3 and show that this compound has pro­

perties very similar to those of KO. 30Mo0 3 . We also describe new re­

sults on what we call the fast phenomena. the high frequency

(F - 10 kHz) voltage oscillations. for Doth KO. 30 Mo0 3 and Rb O. 30 Mo0 3 .

Then. we emphasize for both compounds the importance of metastability

and of slow phenomena with a time scale of - 1s ; we report for doped

KO. 30Mo0 3 samples. the existence of very low frequency (f - 1 Hz)

coherent voltage oscillations and show that these low frequencies

also depend linearly on the CDW current.

In the last section we discuss mostly the origin of the

slow phenomena. in relation with the behaviour and the nature of the

boundaries separating the CDW domains. discommensurations or CDW dis­

locations. We also discuss the role of impurities and suggest that

they may not always be inert and that possible diffusion processes

could be partly responsible for time-dependent effects.

II EXPERIMENTAL TECHNIQUES

The single crystals used in this study were grown by the

electrolytic reduction of a KZM00 4 or Rb ZMo0 4 : Mo0
3

melt in the stoi­

chiometric proportions. The Fe. or Mn doped crystals were obtained by

adding the appropriate proportions of F~03 or MnO Z respectively in the

melt. The crystals are platelets parallel to the (201) cleavage plane

and elongated along the crystallographic b-axis. with typical dimen-
3sions 5 x Z x 1 mm . Transport measurements have been carried out on

samples of typical size 3 x 1 x 0.1 mm 3 using the standard four pro­

be arrangement with the de current parallel to b. Two probe configura­

tion was also used occasionnally. For most measurements, the samples

were immersed in liquid nitrogen in order to avoid self-heating. Elec­

trical contacts were made by evaporating indium on freshly cleaved

crystals and soldering gold wires 50 ~m in diameter onto the evapora­

ted areas. The voltage contacts were - 60 ~m wide and the current
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contacts covered the ends of the samples. The contact resistances

were found one order of magnitude smaller than the sample resistan­

ce. The V-I curves were recorded by slowly sweeping a dc current.

Currents and voltages were measured by conventional digital volt­

meters. The high frequency voltage oscillations were detected by

means of an amplifier and analyzed with a Tektronix 7L5

spectrum analyzer. The low frequencies phenomena were recorded on

a x-t plotter.

III RESULTS

111-1 Voltage-current characteristics

65

Rb5
77K

d=1.2mm

E
t1

O.50V/cm

Et2 O.52V/cm

1

Fig.7 : Voltag~ V~ e~ent e~v~.

Two :thJr.uhold fr£~dJ:, Et7 and Etz
aJr.~ ~hown. Th~ ~u ~hOW6 th~

~wLtehing a.t Etz and voUa.g~ pui.­

~u -in th~ non-Ohmi.e Jt~g-i.m~. Th~

fu.tane~ be..tw~e.n the. voLtage. eon­

ueU ~ d = 7. Z mVL. Th~ ~we.e.ping

time. ~ - 3 mVL 60ft the. -i.nt~va1.

giv~n in the. ~u.

given in Figure 1. The V-I curve

obtained 0::The V-I curve a Rb O. 30Mo0 3 sample at 77 K is

is slightly non linear above a

first threshold field Et1 and shows a jump at a higher sharp thres­

hold field EtZ ' The inset shows more clearly the switching at E
tZ

and the low frequencies pulses. These results are very similar to

those reported for pure K
O

•
30

Mo0
3

.

III-Z Fast phenomena

AboveEt' the no is e vol tag e con t a ins b r 0 a d band and qua s i­

periodic noise. Fourier analysis of the noise on a Rb
O

.
30

Mo0
3

sam­

ple reveals two discrete frequencies F
1

and F
Z

which increase pro-
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portionally to the CDW current density ~DW as shown in Figure 2.
-1 2

The value of the F 1!JCDW ratio is - 1 MHz.A .cm.

F~g.2 : No~e n~equeney a6 d

6undi..on 06 exee..6~ COW eUNtent

deMily me.a.6UlLe.d at 11 K.

Q03

We have also studied the temperature dependence of F1!JCDW
on a pure KO. 3oMo0

3
sample over a limited temperature range because

the CDW current was found to decrease slowly vs time above 80 K.

F1!J CDW increases slowly with the temperature, as shown in fig. 3.
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111-3 Slow phenomena

a) Regime of pulses in pure KO. 30Mo0 3 .

At constant current, we have pr~viously reported (2) that

pulses of transient voltage corresponding to a sudden decrease in

Vdc were produced j uS,t below and above Et (Fig. 4). Below Et .the

pulses have a short rise time, typically l - 3 ms with a length

- 100 ms while above Et , the rise time is much longer with l - 60 ms

and a length - 200 ms. The magnitude of the pulses was - 2% of Vdc
below Et and - 1 % above.

M60

a

· tOo522mA
lOOms' ....-....

lOOms

Ei.g.4 :

a.J PuRAu a.6 a. 6unc;t,i.on 06

tirrie 60ft I = 0.556 mAo The

CUJlJLe.n;l: a;t :the :thJr.uhold

fri.-eld .fA It; = 0.525 mAo

bI 0-6ciilogltam :tJw..ce 06 a.

pul4e 60ft I > It;.

cl o.6ciilogltam :tJta.ce 06 a.

p~e 60ft I < It;.

b) Time dependent effects.

In pure KO• 30Mo0 3 the V-I curve is not always stable as

a function of time. We have recorded the evolution of Vdc as a

function of time at constant current on a sample showing iarge hys­

teresis in the V-I curve as seen in fig. S. The inset shows that

the drift of Vdc from A to At is not a monotonous function of time

and that Vdc exhibits positive and negative steps.
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3

77K
Et =1.7V/cm
d=.72mm

~4

55 time +.-

Fi.g.5 : VoLto..ge. v/.) c.uJlJl.e.n;t C.Ulwe.

.6how.i.ng £aJr.ge hfJ.6t:.e/tui..6. The

i.n6a /.) hoW/.) t:.he. dJLi. f;t 00 t:.he. va£..­

;ta.ge. oJtOm A wAr at:. c.ono:tant

CWVte.n;t. The. c11A:taYl.c.e. be.:twe.e.n

t:.he voUa.ge c.on.ta.d.6 i..6 d =. 12mm.

c) Low frequency voltage o~cillations

We have observed ~n~sually low frequency voltage oscilla­

tions in the Hz range mainly on doped KO. 30Mo03 . In Figure 6, is

shown the V-I curve for a Fe doped sample. The onset of the non­

Ohmic conductivity is not so well defined as in pure KO. 30Mo0 3 .

In Figure 7 are shown low frequency voltage oscillations as a func­

tion of time recorded for various values of the dc current. The

oscillations (a) and (h) are periodic but not stable as a function

of time. They were coherent for only - 15 cycles. The curves (b) to

(g) were found aperiodic.

We have found that these oscillations could be made cohe­

rent on very long time scales (at least several hours) by applying

a dc current during the cooling down to 77 K. In pure KO. 30Mo0 3 ,

only pulses were found and the corresponding pseudo-frequencies did

not seem to depend on the electrical history of the samples.
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Fe -KO•3 Mo03
17K

d: 2 mm

l(mA)

200

F~g.6 : V-I c~ve 60~ ~ Fe-do­
ped KO•3Mo03 ~amp.e.e. The mo£.M

concentnation 06 FeZ03 ~ the

meLt Wa6 3 %. V~tance between

voUage e.on;ta.c;to d = Z mm.

F~g. 1 : Vo.e.ta.ge o~dUa;Uo~ a!.l a.
6uncti.on. 06 me 60~ cU.66~en.t va.£.ue..6
06 the de. e.WlJl.en.t. The ~a.mp.e.e Wa!.l cooled

down to 11 K wah a. ZeM CwrJl.en.:t.

Typical results are given in Figure 8 for a Mn doped sam­

ple cooled with a dc current smaller than the critical current at

the threshold. Large amplitude and incoherent oscillations were

found if the sample was cooled in a zero current while small ampli­

tude and coherent oscillations were found when cooling with a de

current I c smaller than the threshold value at 77 K (Ie -O.7I
t

at

77 K). The frequency of these oscillations increases almost linear­

ly with the CDW current density as shown in Figure 9.
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3
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..-.-----"--
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­...
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IV DISCUSSION

Let us first discuss the properties of Rb O• 30Mo0
3

. It

has been already reported that the transport properties, the

Peierls transition temperature and the incommensurate state are

very similar in KO• 30Mo0 3 and Rb O. 30Mo0 3 (4). The same is true for

the non linear transport properties ; the threshold fields are of

the same order of magnitude in both compounds and slow pulses are

also found in Rb O. 30 Mo0 3 • Taking into account all the data we have

co~lected up to now, it is difficult to decide what are the diffe­

rences between both compounds. This corroborates that the main ro­

le of the alealine metal in this class of compounds is to provide

the charge transfer which fills partially the conduction band j it

should also be noted that, in spite of the difference of size of

K+ and Rb+, the lattice parameters of both compounds do not differ

from more than 2 % (24).

The frequencies F of the fast voltage oscillations are

in Rb O. 30 Mo0 3 also proportional to the CDW current. The val~e of

1 MHzA- 1cm2 found for F/J CDW is, as for KO• 30 Mo0 3 , much larger than

the value of lineA ~ 4 x Ifr- 3 MHz A- 1cm2 estimated in the classical

model, with A ~ 4b and assuming a complete charge transfer from the

alcaline metal. This could be due to the fact that only filaments

of the crystal take part in the COW transport the existence of a

sharp threshold in the V-I characteristic makes this explanation

very unlikely. Our data therefore do not seem to be consistent nei­

ther with the simple classical model nor with the Josephson type

model.

In the absence of a simple picture accounting for the

high frequency oscillations it is difficult to understand the in­

crease of the ratio F/JCOW with increasing temperature between 50 K

and 80 K in KO. 30Mo0 3 . It should be noted that in the same tempera­

ture range the q vector seems to be constant (5). This variation

could however be related to a decrease of the density of the elect­

trons condensed in the COW with increasing temperature.
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Among the slow phenomena, the regime of pulses found in

the pure samples of KO• 30Mo0 3 (Fig.4) is puzzling. In order to

measure unambiguously the amount of electrical charge Q correspon­

ding to a single pulse we have performed two contacts measurements

with a constant applied dc voltage and have recorded the curr~nt

vs time Q is then found to be in all cases in the range of 0.5

to 1 ~C this indicates that the pulses involve a comparatively

macroscopic object. They could be attributed to local (contact)

phenomena; however, the motion in the bulk of the crystal of any

charged object could give rise to such a pulse the short rise

time would correspond to the sudden displacement of this object

and the long decay time (-100 ms) to the slow relaxation of the

rest of the sample.

In the regime of pulses found for E < Et , the CDW are

static and pinned and each pulse could be due to the depinning of

a small region of the crystal. Such a local depinning involves the

displacement of some domain boundaries. One can invoke the motion

of domain walls such as discommensurations as proposed in other

models (16). We also suggest that the motion of dislocations in

the CDW lattice may be important for these results. The existence of

such dislocations had already been proposed several years ago by

Lee and Rice (17).

Above the threshold field, the pulses are superimposed

on the CDW transport ; the CDW current should then correspond to

an average stationary velocity and the pulses to fluctuations of the

velocity of some domain boundaries. In this context, the time de­

pendent effects and especially the drift towards the ohmic regime

indicates that some domain boundaries become pinned as a function

of time, very likely because they reach sometimes potential

barriers that they cannot overcome.

One should note at this point the similarities of our re­

sults with those concerning the displacement of a single Bloch wall

in a ferromagnetic crystal (18) ; the Barkhausen noise recorded when

the wall is constrained to move with a constant velocity is very si­

milar to the regime of pulses in the case of CDW transport in

KO• 30Mo0 3 •
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There is also some analogy between our data and the time­

dependent and hysteretic properties related to vortices motion in

type II superconductors (19). The motion of flux bundles (bunch of

vortices), pinned by irregularities also gives rise to pulses, in

some cases with pseudofrequencies decreasing logarithmically with

time. However, the time scale of the pulses is much shorter in the

case of vortices motion and our results are more reminiscent of the

properties related to the motion of a Bloch wall.

In the CDW systems, the pinning of the CDW and the exis­

tence of metastability seem to have been attributed mostly to impu­

rities and to crystal defects. However, it has been shown recently

by Ie D'Haeron and Aubry (20) that in an incommensurate system, the

CDW Frohlich type conductivity should vanish if the electron-phonon

coupling is larger than a critical value ; in this situation, the

motion of the CDW requires the overcoming of a Peierls-Nabarro ty­

pe barrier, even in the absence of any extrinsic disorder in the

system. The existence of metastability is thus a consequence of the

competition between the two periodicities determined by the lattice

and the Fermi wave vector.

~he importance of th~s mechanism compared to impurity pin­

ning could be elucidated by the study of doped samples. Our data

obtained on samples doped with non isoelectronic transition metal

impurities i~ rather large concentlations (-1% at) seem to indicate

two tendencies :

1) The threshold fields are comparable in the doped samples and in

the "pure" ones.

2) A regime of coherent low frequency (-1 Hz) voltage oscillations is

found inmost doped samples.

These results are puzzling j one could suggest that the

impurities enter the crystals on sites non active for the CDW such

that interlayers sites ; this does not seem to be the case in Fe
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doped K
O

. 30M00 3 , as Mossbauer studies on Fe 57 indicate that Fe en­

ters in substitution on all Mo sites (21). One could invoke a weak

pinning by the impurities and the presence of other defects, such

as vacancies due to non stoechiometry in the "pure" samples. But

one has then to understand why the presence of large concentr~tions

of impurities favour the existence of low frequency coherent

oscillations rather than pulses as in the pure samples. The situa­

tion at present is not clear.

We would like however to suggest another possible role

of the impurities. It is well known in the case of a Bloch wall in

an FeSi single crystal that Carbon impurities are involved in the

potential wells in which the wall is eventually trapped. These im­

purities diffuse in the crystal and, when the Bloch wall moves,

cause the potential wells to be dragged along ; ~his leads to ins­

tability phenomena and in some regimes to quasiperiodic behaviour

(18). A similar but more sophisticated mechanism has been propos~d

recently to account for memory effects in an incommensurate insu­

lating system, deuterated thiourea (22). In this case, the defects,

possibly impurities, are assumed to interact with the modulated

potential ; the diffusion of the defects would then lead at ther­

mal equilibrium to a modulated impurity concentration.

We suggest that a diffusion mechanism could account in

the case of the blue bronze for the role of the cooling process.

When the sample is cooled in the absence of a dc current, the de­

fects would reach during cooling a repartition determined either

by the superlattice q vector and (or) by the configuration of the

CDW domains at some intermediate temperature, depending on the

cooling speed, as q is temperature dependent. When cooling is per­

formed with a dc current, the CDW motion during the cooling would

lead to a different distribution of the defects at low temperature.

In the first case, the inhomogeneous distribution would be respon­

sible for the large and chaotic oscillations and in the second one

the possibly more homogeneous - configuration for small and coherent

oscillations.

The proportionality of both the low frequencies f and

the high frequencies found for the voltage oscillations show that
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both are determined by the CDW drift velocity ; one may then suggest

that f is related to the average size of the CDW domains. As-Y is
o

expected to be related to the superlattice wavelength (-30 A in our

case)" the order of magnitude of the low frequency f may indicate an

average domain size of roughly 30 p. These speculations should now

be 'corroborated by more detailed studies of memory effects for the

low frequency oscillations and obviously by direct observation of

CDW domains.

The coherence of both the low and high frequencies

oscillations for typical sample volumes of 108~3 is surprising

this should be compared with recent results obtained by Gruner et

al (23) which seem to indicate the vanishing of the high frequency

oscillations in the thermodynamic limit. It is not clear whether

our results support such a model. But they certainly indicate the

existence of very strong interdomain couplings.

V CONCLUSION

We have shown in th.is article that both Rb O• 30Mo0
3

-and

KO. 30 Mo0 3 show non linear conductivity characterized by a threshold

electric field and fast voltage oscillations which have to be attri­

buted to CDW transport. These properties are accompanied by time

dependent effects, low frequency pulses. or coherent oscillations

which depend on the cooling process, with or whithout a dc current.

This shows the importance of metastable states in these samples.

Metastability must be associated with the existence of CDW domain

boundaries, discommensurations or dislocations in the CDW lattice.

We suggest that impurities, vacancies or other crystal defects,

responsible for the pinning of the CDW,may be coupled to the CDW

modulation or to the domain boundaries and if they are able to

diffuse, may account for the memory and time dependent properties.

Our results, as well as those obtained on the transition

metal tri and tetrachalcogenides, show clearly that any further

progress in the understanding of CDW transport will first require

direct observation of CDW domains, in spite of the intense theore­

tical work already performed on this subject.
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