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We show in this work by the joint use of the Monte
Carlo and molecular dYnamics techniques that a classical
treatment of the Fukuyama-Lee model on ID incommensurate
CDW in the weak pinning regime can well reproduce the
peculiar transport properties attributed to a motion of
CDW, such as the nonlinear electric conduction associated
with narrow band noises. The results of the inSPection of
phase profiles in motion are also discussed.

The Fukuyama-Lee theoryl,2) on ID incommensurate CDW conden

sate describes behavior of CDW in terms of its phase variable

~(x,t)~ while its amplitude is held constant. The FL energy for

~(x)+~1 on a discretized (d~) lattice introduced for nume~ical

simulation is written as

(l)

where Ee=vFn./2~, C=N./M=n.d,· e'=VOPO/E and ef=eE/~n.E. Here
~ ~ ~ ~ e ~e

n.=N;/L is the impurity density, N. being the number of impuri-
~ . ~ .

ties and L the system size. M, d, c and 1. are the quantities
J

related to the d-lattice; M being the number of its sites, d its

lattice distance, c the impurity concentration on this lattice,

and 1. the impurity sites. The other notations are the same as

in th; FLpaper2) (see also Teranishi and Kubo3». The first two
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terms in r.h.s. of Eq. (1) are the elastic and impurity potential

energies, Eland E t' respectively, and the last term is thee a po
electric field energy with €f being the reduced field strength.

The parameter €~(=~~€), where € is the corresponding parameter. in
the FL theory, specifies whether COW is in the weak (€<l) or

strong (€»l) pinning regime. In the present work we exclusively

study systems with €. =1. Also we examine only systems with
. 1.

c=1/4. This value is chosen because, on the one hand, d has to

be much smaller than ~FL, the coherence length in the ~ (x) varia
tion given by2)

~FL (2)

with a=3i~2 (~FL=14d with €i=l and 0=1/4), but on the other hand,

accurate numerical simUlation is the harder for systems with the

smaller c.

We have carried out the Me simulation4) on 2(5) samples with

Ni =250(50) to look for their equilibrium configurations of EFL •

The samples have the same parameters specified above, but have

different sets of 1 j . The periodic boundary condition ~M~O is

imposed on them. For each system many equilibrium configurations

-Epot/Ni

Fig. 1. -Epot vs Eela of ~e lowest.
energy configurations of our seven
samples. The chain line represents
Epot=-4Eela' and the solid circle is
the FL value with a=3/~2.
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are found. Plotted in Fig. 1 are -E t vs. E 1 of the lowestpo e a
energy state found within our simulation for each sample with

Ef=O. The results confirm the FL theory on the weakly pinned CDW,

according to which the energies are given by -E t=4E 1
1/3 . po e a

=(a/2) Ni , where Ee=l and Ei=l are used to derive the last

equality. By the inspection of phase profiles the existence of
~FL, whose magnitude agrees with Eq. (2) within a few factor, is

also ascertained. For an example we show in Fig. 2 the relative

p~ase shift from one of the equiliblium configurations with Ef=O

observed when the field less than E~, the threshold field, is

applied ~nd then switched off. The value E~ of each sample can

be determined by the MC method within an accuracy of ±0.025 from

the criterion whether stable solutions exist or the phases are

....
. -...

o

Fig. 2. An example of the relative phase shifts from
one of the equilibrium configurations with Ef=O when

the field E
f
=0.2 «E~) is applied.and then switched

off. The dotts represent ~lj at which the impurity

potential is maximum. The configurations at &f=0.2

(broken curve) and at Ef=O after the switching off

(solid curve) are stable our Me observation at T=O.
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ever increasing (i.e., the CDW is sliding).

Switching on the field larger than E~ upon the equilibrium

configuration ,thus obtained, we examine dynamics of the sliding

CDW by the MD technique based on the following equation of motion
for cf> 3)

1

(3)

where r=dy/v, v being the phason velocity.2) To derive Eq. (3)

we have introduced a phenomenological frictional force propor

tional to -y~l' and normalized the time by y-l, or yt~t. In the

present work we put r 2=lO, which corresponds to the overdamped.

regime of the cf>l-dynamics. Equation (3) is solved by means of

the Runge-Kutta argebra with the (normalized) time step of

6t=O.5. The current associated with the sliding CDW is then

evaluated by J(t)=(e/~M)Icf>l.

The clude value of E~ of each sample is obtained by the Me

method as mentioned above. We have then tried to adjust it

oa~ ... Ni=50

.. Ni=250

Fig. 3. The static non
linear conductivities of
our seven samples. The
solid and broken curves
indicate those obtained
by Bardeen's tunneling
theory9) and by the
classical particle model
with a sinusoidal poten-
tial,lO) respectively.
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slightly whether the normalized static conductivity o (Ef)/o(m)

plotted against Ef/E~ of the seven samples lie on a common curve.

The results are shown in Fig. 3, with E~=O.2S~O.4S, which are
somewhat larger than those obtained previously.3,S) It is noted

here that even with a relatively large Ef(=l) the prefactor of

the last term in Eq. (1) or (3) is rather small compared with 

those of the rest. This means that appropriate equilibrium con

figurations determined through Eela and Epot are indispensable to

examine subtle field effects. In this respect the present joint

use of the Me and MD techniques is much advantageous than the
previous work,3,S,6) Unfortunately, however, it is still hard to

simulate the fine details of O(E f ) just above E~.

The current J(t) exhibits a certain Periodic structure as

shown in Fig. 4. Its Period turns out the time for ~(=M-IL~1) to

increase by 2U. Therefore its inverse, i.e., the fundamental

frequency n of the narrow band noise, is proportional to the

static (averaged over t) current as found experimentally. This

is confirmed by the direct inspection of J(t) when Ef>2E~. For

Ef near above E~, however, the structure of J(t) becomes compli

cated as seen in Fig. 4b. In this case an interesting result is

found in the phase profiles in motion as shown in Fig. Sb: the

overall phase increases inhomogeneously, i.e., by the local move

ment of solitons and antisolitons,4) and by their pair creation

or annihilation. These inhomogeneities are thought to yield a

fine structure in J(t). When Ef»€~' on the contrary, the

overall phase increases rather homogeneously as shown in Fig. Sa,

resulting very sharp Peaks at nand its higher harmonics in the

noise spectrum. Further analysis on the spectra is now in

progress.

Finally we note other interesting phenomena found in the

present simulation. i) The amplitude of the current noise seems

to decrease as the time proceeds. This has been clearly observed

when Ef>lOE~. ii) Responses of the current to pulsed fields are

also examined. As expected from our choice of r no inductive

(inertia) effect is observed just after the switching on or off

of the field. iii) The phase profile after the switching off the

-28-



field is clearly different from that before applying the field.

(By our simulation this is also the case even with E f less than

E~ as seen in Fig. 2.) This is certainly related to some hyste

retic phenomena observed experimentally.?) However no system

matic "overshooting" phenomena have not yet been observed. iv)

The total (impurity) force acting on the whole COW, cE.E.sin(Qdt.
1 J J

+$tj)' decreases as E f above E~ increases. This indicates that

when one tries to interpret the present results by means of the
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Fig. 4. Real-time
current profiles of
one sample with Ni =
250 under

T
a) E

f
=0.8=2.9E f

T
b) E

f
=0.4=1.,4E f ·

See Fig. 5 as for
the meaning of the
arrows.



( a)
eo <": ••- 0,: :"':_:.. ";...:.' :.0' .

l

.:.:.....
(b)

l

the

motion at
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move-

Fig. 5. The corresponding phase profiles in
the time intervals indicated by the arrows in Fig.
under E"f=O. 8 (a) and Ef=O. 4 (b). Notice the local

ment of solitons and antisolitons as indicated by
arrows in (b)
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single particle model for a whole COW, the force (and so poten

tial) acting on the particle has to depend on the field.

In conclusion we have confirmed by numerical study that the

literal FL model on 10 incommensurate COW condensate in the weak

pinning regime and with a large phenomenological frictional force

does reproduce many interesting transport phenomena, which are

observed experimentally in some quasi-lO conductors. They are

attributed to the COW sliding motion. Dynamics of the CDW phase

profiles, i.e., that of the internal degrees of freedom of COW,

is shown to play an important role on these phenomena. To

explain experimental results much closely, however, some refine

ments of the FL model are certainly required, such as to include

the distribution of Ei ,8) or the 2D or 3D character.
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