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In the sliding CDW regime a sheet of phase vortices are formed at the

boundary of two sliding CDW domains with different sliding velocities. This

sheet of vortices move parallel to the boundary with the average velocity

determined by the difference of the sliding velocities. This sheet of

vortices give rise to both the dc and the ac current.

As is well known a number of quasi-one dimensional charge density wave

(CDW) systems like NbSe 3 and TaS 3 (orthorhombic and monoclinic) exhibit

nonOhmic conduction when the applied electric field exceeds the threshold

field E
T

of the order of 10-2-1 Volt cm- 1• More intriguing is the appearence

of the narrow band noise (a series of peaks at harmonically related

frequencies seen in the spectrometer) in the nonOhmic regime. 1- 4 As to the

nonOhmicity, it is generally believed that the extra current above E
T

is due

to the charge transport of the sliding CDW. Since the extra charge associated

with the CDW is given by

(1)

with Q=2kF and the chain direction is taken as the x axis, the sliding of the

CDW with velocity v accounts for the linear relation

(2)

established by Monceau et al. 2 Furthermore the observed n
i

2 dependence 5 of E
T

is consistent with the impurity pinning of the CDW6, where n. is the impurity
1

concentration.

As to the origin of the narrow band noise a variety of models have been

proposed. The most popular one is the classical washboard model,7-9 where the

phase of the CDW behaves like a classical particle in a periodic potential,

n ~t + w~sin~ • n~ E (3)

where n is the damping coefficient, Wo is the pinning frequency and M is the
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Fig.l The sample geometry

at the contact (silver

NbSe3 ~,
¢=

C •
D ~ I(,

0 -x

paint) is schematically

shown. The current flows

in the -x direction. The

open circles are an array

of vortices moving in the

y direction.

mass of the COW. From the microscopic phase Hamiltonian one can derive

Eq.(3), 1) if one ignores the spatial dependence of ~ and 2) if the periodic

potential is assumed to be a simple cosine function. The replacement of the

inertia term by the viscous term may be justified from the experimental fact

that the COW behaves in the ac field like an overdamped oscillator.

Although this model can describe the coarse features of the nonOhmic

conductivi ty; 1) the existence of the threshold field ET and 2) appearence of

.th~ ac current for E>ET, it is too crude to describe the details of the

nonlinear conductivity. In particular, Eq.(3) predicts the square root
1

increase of the dc current as (E-ET)T, which has never been observed.

Furthermore the ac current has definite

frequencies. In any case by the assumption 1)

large degrees of freedom associated with ~ are

completely disregarded. It is quite natural

therefore to improve the model by introducing

more degrees of freedom in the problems. This

possibility has been pursued into two different

directions by Sneddon et al. 10 and by Pietronero

and Strassler. 11 The vortex model may be

considered as the third way to salvage this

unused degrees of freedom. Furthermore the

vortex model can avoid difficulties, which beset

the classical washboard model. 12 First of all

we shall draw attention to the fact that the

contacts on the NbSe 3 sample in general give

rise to an en<)rmous perturbation on the
12sample. Th:.s is readily seen in Fig. 1.

Since the contact provides a large shortening

path, we expect that the local electric field

immediately below the contact is much smaller

than that in the bUlk; EII«Er where the region II is under the contact and

the region r is the outside of this region. In the following we shall

consider a typical case Er-E>ET while Ell-O. Stri ctly speaking there is a

transition region of width of ATF between the region I and II, where the

electric field changes from E-O to ET• However this Thomas-Fermi length ATF
is much smaller than t(=102 Ao) the coherence length of the COW condensate.

Therefore we can assume for practical purpose that the electric field changes

abruptly from E to 0 at the boundary.' When E>ET in the region I, the COW in

the region I is sliding with velocity v uniformly in the -x direction. On the
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Fig.2 Two possible configurations of

vortices are shown a) asymmetrical

and b) symmetrical. The thick curves

are the crest of the CDW.

other hand in the region II the CDW is

immobile implying that there is a

clash of the CDW at the boundary of I

and II. As is well known in other

examples in condensed matter physics,

this clash is most economically

avoided by introducing a sheet of

phase vortices, which moves

transversally to the progressing CDW.

Two possible vortex configurations are

shown in Fig.2 a) and b). Therefore

in real experiments with NbSe3 sample

as shown in Fig. 1, appearence of a

sheet of vortices are unavoidable.

More generally, if two phase

domains sliding with different

velocities share a boundary, the

boundary contains necessarily an array

of phase vortices moving along the

phase boundary transverse to the

sl i di ng domai ns •

The average of the product of the

vortex velocity and the linear vortex

density n is determined by thev
difference in the sliding velocities of two domains as

( 4)

which is nothing but the conservatio~ of the phase as well as the conservation

of the dc component of the CDW current J CDW in the X-direction.

In order to describe the phase vortex in the CDW we need the phase

Hamiltonian;

H - ~oJd3X a+ C1 a+ + JdJX veep) (5)

where No is the density of state at the Fermi level, C1 is the squared phase

velocity tensor (Note that the system is quite anisotropic) and Veep) is the

impurity potential which pins the phase oscillation. In the following we

shall invoke the potentiar term only thrOU~h the Lee-Rice length6, which

provides a natural screening distance for the local phase disturbance.
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Following Lee and Rice 6 we introduce a new length units by y'- ~ y andC2

z'- ~ z into Eq.(S). Then in terms of y' and z' Eq.(S) is rewritten as
3

H z ~oC2C3Jd3X (Vep)2 + C2C3Cl-2Jd3X veep) (6)

A vortex line sits at x-O and y-O and parallel to the z axis Is given by

ell - tan-1 (y/ x)

SUbstituting this into Eq.(6), the vortex energy per unit length (now measured

in z rather than in z') is given by

( 8)

where we have cut off the logarithmic divergence at ~ the BCS coherence length

and A the Lee-Rice length. The coefficient of the logarithm may be rewritten

as wNoA2~~2' with ~2-C2C1-1~. Therefore £v is comparable to the condensation

energy associated with an ellipse with an area W~~2. When there are two

vortices at (o,y 1) and (o,y 2)' we have

( 9)

SUbstituting this into Eq.(6), we obtain the interaction energy of two

vortices per unit length as

where we assumed that /Yl-Y21«A.

case of superconductivity, Eq.(10)

N C C K (Jy 1 -y ? '-)

£1 - ~ 0 1 2 0 A

(10)

Making use an analogous analysis in the

may be gerneralized as

( 11)

where Ko(z) is the modified Bessel function. In the limit IY1-Y2/«A, Eq.(11)

reproduces Eq.(10) while for /Y1-Y21»A, the interaction potential decay

exponentially with the distance IY1-Y21.

Now we shall consider an array of vortices at x-a and y-y. (t). The
1 .

corresponding ep is given by

\ -1ep - L tan (y-Yi(t)/x)
i

( 12)

To determine the equilibrium positions {Yi} is a difficult task even in

the absence of the electric field, as we have to take into account of the

image force, which attracts the vortices near the surfaces (y-O and y-L in the
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( 13)

present goemetry). Therefore we believe that the vortices are more dense near

y=O and y=L even in the absence of an electric field which causes sliding of

the CDW in the region II. When there is a discontinuity of E in the electric

field at x-O. as shown in Fig. 1. the electric field introduces an additional

potential energy which pushes the vortex in the y direction. This energy is

evaluated fran

EE a ~ f~x f~y E~

For a vortex at y-yi' Eq. (13) gives

e fA fL -1 (y-Yi)
EE ... n ~x ~y E tan ---x---

; 2e e (L 2 -2Ly.) 1n(A/L)
'II" 1

( 14)

Therefore for A»L. the electric field provides a linear potential for a

vortex at yaYi. Let us assume that the electric field sets the array of

vortices in motion. This array of vortices generate both the de and the ac

current in the x direction. which is given by

( 15)

( 16)

We shall come back to Fig. 1. where open circles are vortices moving in

the y direction along the line x=O. We are interested in the difference in

the CDW currents in the regimes I and II. which can be obtained by integrating

Eq.(15) along the path C, which encloses all the vortices

6J ... J CDW2 - J CDW1

"" en
c
Q-l tg£ ~t

Substituting Eq.(12) into Eq.(16), we find

6J a -2'11"e n Q-1 LY. (17)
c i 1

.
where Yi is the velocity of the vortices. If we take the time average of
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Eq.(17), the de component of Eq.(17) is nothing but the minus of the

difference in J c given by Eq.(2) for two regimes. The vortex sheetDW
compensates exactly the missing de component of the CDW current. On the other

hand, since the motion of vortices cannot be uniform, Eq.(17). can generate the

ac component. The appearence of the ac component associated with the moving

vortex sheet is also consistent with a recent experiment 13, which indicates

that the noise source is highly localized near the contacts.

There are a few mechanisms, which break the uniform motion of an array of

vortices; the sample walls where the vortex enters and exits give rise to

pinning potentials in the case shown in Fig. 2 a), while the creation of

vortex ring at the center of the sample is also a discontinuous event in the

case shown in Fig. 2 b). In additon to these intrinsic effects, crystalline

defects in the vortex path will provide a pinning potential for a vortex. In

general, when a vortex is approaching the pinning potential, the velocity

increases above the average velocity, takes the maximum value at the center

and then falls to the average velocity as the vortex,moves away from the

center. rhis will show up as regular solitonic peaks in JCDW(t). Furthermore'

the effect is quite visible if the total vortex number in the array is not so

large. Although the absolute magnitude of the solitonic structure is not

affected as the vortex number increases, the more incoherent behavior of other

vortex will wash out this feature when the vortex number is increased. The

above solitonic feature is consistent with some of the experimental

observations. 12

The broad band noise is also very likely generated by random motion of

the array of vortices. However, in order to obtain more explicit expression

of JCDW(t) for example a further theoretical analysis is required.
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