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Abstract 

 

  This paper deals with the interference of spherical waves of thermal radiation emitted by 

a surface film system which consists of a metal substrate and a semi-transparent film. A 

spectroscopic experiment is made to reconfirm the clear interference in emission spectra of 

the film system. We present a theoretical model in which an electromagnetic theory for a 

spherical wave is combined with Planck’s theory of thermal radiation. The mechanism of 

interference of spherical waves is discussed, and it is suggested that thermal radiation waves 

emitted by a number of dipoles of the metal might be coherent among each other. 

 

Key words :  thermal radiation, emission, spherical wave, interference, coherency, surface 

film, spectroscopic measurement 

 



 2 

 

Nomenclature 

 

d   :  (average) thickness of film, m 

Ê (r) :  complex electric field vector at position r, V/m 

EO  :  (real) electric field vector at position rO, V/m 

eq   :  unit vector in direction of q-polarized component of electromagnetic wave 

i   :  imaginary unit 

IB   :  (spectral) intensity of blackbody radiation in vacuum, W/(m3�sr) 

k   :  index of absorption, (imaginary part of n̂ ) 

k    :  wavenumber of electromagnetic wave in vacuum, m-1 

k ˆ    :  complex wavenumber vector of electromagnetic wave, (= k real+i k imag), m-1 

k real, k imag  :  real and imaginary parts of complex vector k ˆ , respectively, m-1 

n   :  index of refraction 

n̂    :  optical constant, (=n+ik) 

R   :  (spectral directional-incidence specular reflection energy) reflectance 

r   :  position vector of point in medium 1, m 

r’   :  position vector of point on interface I, m 

r̂    :  Fresnel’s complex reflection coefficient 

rO   :  position vector of point on hemisphere centered at point O in medium 1, m 

< S > :  time mean of Poynting vector of electromagnetic wave, W/m2 

t   :  time, s 

t̂    :  Fresnel’s complex transmission coefficient 

'AO  :  infinitesimal area in vicinity of position rO, m2 

'A1  :  infinitesimal area in vicinity of point O, (=const.), m2 

'A’  :  infinitesimal area in vicinity of position r’, (=const.), m2 

'QqOl :  energy of electromagnetic wave passing through area 'AO, W 
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'Q(s+p)0 : energy of electromagnetic wave passing through area 'A’, W 

':0  :  solid angle of observation, (=':00), sr 

':0l  :  solid angle of electromagnetic wave transmitted through interface I, sr 

':1l  :  solid angle of electromagnetic wave incident on interface I, sr 

H   :  (spectral directional) emittance 

T0   :  emission angle of electromagnetic wave in medium 0, (angle of observation),  

     (=T00), rad 

T1   :  emission angle of electromagnetic wave in medium 1, (=T10), rad 

O   :  wavelength of electromagnetic wave in vacuum, m 

P   :  absolute magnetic permeability of vacuum, H/m 

V   :  rms roughness, m 

Z   :  angular frequency of electromagnetic wave, rad/s 

 

Subscripts 

B   :  blackbody 

film  :  film system 

l   :  number of multiple reflection in film, (l=0, 1, 2, …) 

N   :  15o-direction emission 

NH  :  15 o- incidence hemispherical reflection 

NN  :  15 o- incidence specular reflection 

O   :  centered at point O 

q   :  q-polarized components of electromagnetic wave, (q=s, p) 

real, imag : real and imaginary parts of complex quantity, respectively 

s, p  :  s- and p-polarized components of electromagnetic wave, respectively 

(s+p) :  natural radiation 

0, 1, 2 :  medium 0 (vacuum), medium 1 (film), medium2 (substrate), respectively 
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Superscripts and others 

calc  :  calculated 

exp  :  experimental 

^   :  complex quantity 

||  ||  :  norm of complex quantity 
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1. Introduction 

 

  Thermal radiation characteristics of a metal or a semi-conductor can change sensitively when 

a film and/or microstructure is formed on the surface. The authors [1] found that the spectra of 

thermal radiation emitted by a metal surface, on which a semi-transparent film is formed, 

show a clear phenomenon of radiation interference. The interference phenomenon in the 

emission spectra was impressive for us [2], but it was not a new finding. The phenomenon in 

such a film system had been well known empirically in the field of metallurgy [3]. However, 

the interference in thermally emitted radiation spectra has not been explained theoretically. 

  The film interference in the reflection of a plane electromagnetic wave has been well 

known, and has been explained enough by classical electromagnetic wave theory. On the 

other hand, interference of a thermally emitted radiation wave cannot be explained in a similar 

manner. That is, thermal radiation is spherical electromagnetic waves emitted by a number of 

dipoles thermally moving randomly. The spherical waves emitted by a number of neighboring 

dipoles have been assumed not to interfere systematically among each other. For the spherical 

wave to be characterized by a clear interference phenomenon, a spherical wave emitted by an 

individual dipole and the components of the wave multiply reflected in the film, should 

interfere systematically in the vicinity of the dipole. Intensity of a spherical wave attenuates 

in the film inversely proportional to the square of the distance from the radiation source. 

These conditions are different from the interference of a reflected plane wave. Kirchhoff’s 

law which does not consider the phase of an electromagnetic wave is outside of this 

consideration on this interference phenomenon. 

  For the quantitative evaluation of the emission flux or emittance spectrum for thermal 

radiation, Maxwell’s electromagnetic wave theory is not enough. Planck’s theory of thermal 

radiation should be combined with the Maxwell’s theory for characterizing the intensity of the 

emitted thermal radiation. Such a combined theoretical description has not been presented. A 
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theoretical model should be presented here on the coherency of a spherical electromagnetic wave 

in the vicinity of radiation sources with consideration of Planck’s theory. 

  In the thermal engineering field, thermo-photo-voltaic (TPV) conversion techniques are 

required, and a spectrally functional radiation emitter which emits thermal radiation in a specified 

wavelength band region selectively is expected to be developed [4]. The above-mentioned surface 

film system is promising from this engineering point of view. 

  In the present study, we deal with the interference of thermal radiation emitted by a film 

system which consists of a metal substrate and a semi-transparent film. First, a spectroscopic 

experiment is made on the emission and reflection of this film system. Next, a theoretical model 

of radiation emission is presented by combining electromagnetic theory for a spherical wave with 

Planck’s theory of thermal radiation. The spectra calculated on the model are compared with the 

measured spectra to consider the mechanism of the interference of thermally emitted radiation 

waves. It is suggested that thermal radiation waves emitted by a number of dipoles of the 

metal might be coherent among each other. Also, the possibility of an effective spectrally 

functional radiation emitter is suggested. 

 

 

2. Procedure and Results of Spectroscopic Experiment 

 

2.1  Preparation and formation of film system 

  Material of the specimen of a film system is a polycrystalline nickel plate of 99.99 % in 

chemical purity, whose size is 15 mm in width, 50mm in length and 2 mm in thickness. The 

surface is mechanically buffed to realize the optical smoothness of the maximum roughness 

less than 30 nm. The surface is heated in atmospheric air at a heating rate of 1 K/s. An oxide 

film is formed on the nickel surface. The surface is heated up to 1100 K, and heating is 

stopped. The surface is cooled naturally to room temperature, and the surface state of 1100 K 

is frozen. 
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2.2  Spectra in formation process of film system 

  In this film formation process, we measure the change of spectra of 15o-incidence 

specular reflectance RNN and 15o-direction emittance HN of the surface simultaneously by a 

high-speed spectrophotometer system [1]. Figure 1 shows the results. The abscissa O of the 

figure is the wavelength of radiation in vacuum. t is the time after the start of heating of the 

surface. At t=600~800 s the surface reaches the temperature of 900~1100 K. A surface film 

grows well at this stage. Corresponding to this film growth clear oscillation appears in the 

spectra of RNN and HN. With the growth of the film valleys and hills of the spectrum, 

oscillations appear and shift to the longer wavelength region of the spectra. 

 

2.3  Spectra of film system at 1100 K 

  In Figure 1, t=800 s corresponds to the time when heating of the surface is stopped and 

the surface is begun to be cooled. In the discussion on Figure 5 in Section 4, measured values 

of reflectance and emittance at the last stage of this heating (t=800 s) are noted by 

RNN
exp(1100 K) and HN

exp(1100 K), respectively. The RNN spectrum at this stage is analyzed by 

a spectrum surface diagnosis technique of Reference [5]. The average thickness d of the 

formed film is d=0.9 Pm. The rms roughness V of the film surface cooled to room temperature 

is V=0.2 Pm, which is measured by an optical microscope. 

 

2.4  Spectra of film system at 600 K 

  The surface system once cooled to room temperature is heated up to 600 K and kept at 

the temperature. Spectra of 15o-incidence specular reflectance RNN and 15o-direction 

emittance HN are measured simultaneously by a Fourier transformation infrared 

spectrophotometer system [6]. This spectrophotometer was specially designed to measure the 

reflectance and emittance simultaneously. It takes longer time for the spectrum measurement 

than that by the high-speed spectrophotometer system [1], and it does not fit for the fast 
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measurement of the surface in a transient process. On the other hand this FTIR system has 

higher sensitivity and it measures comparatively weak emission of a surface at temperatures 

of 600 K level. Also, it can measure the spectra of RNN and emittance HN over the wavelength 

region of O =1.5~16 Pm. Since the surface film system is known to be stable in atmospheric 

air at less than 700 K, the measurement is made at 600 K. The spectra of RNN and HN 

measured in this experiment are noted as RNN
exp(600 K) and HN

exp(600 K). 

 

2.5  Results of spectroscopic measurement 

  Figure 5 as described later in Section 4.1 shows the results of the spectra of reflectance 

RNN
exp(1100 K) and RNN

exp(600 K) and, emittance HN
exp(1100 K) and HN

exp(600 K). The 

reflectance is that for natural radiation, and the emittance is that for emitted natural or 

unpolarized radiation. 

  2.5.1  Experimental errors and surface scattering      Measured reflectance 

RNN
exp(600 K) is as high as 1 in the longer wavelength region of O >10 Pm. It is considered to 

be caused by a background radiation error. Reflectance RNN is low in the shorter wavelength 

region. It is caused mainly by the influence of the surface roughness. The surface is 

roughened in the process of oxide film growth. Reflected radiation is scattered over 

hemisphere. The reflectance RNN is a directional reflectance for the specular reflection 

component. Thus, reflectance RNN decreases particularly in the shorter wavelength region. 

  2.5.2  Interference of radiation in emittance spectra      In Figures 1 and 5 clear 

oscillation of interference of film interference is found not only in the spectra of reflectance 

but in those of emittance. Interference behavior in the emitted thermal radiation [1, 2, 5] is 

reconfirmed experimentally. 

  2.5.3  Stability of surface state      The spectra of reflectance RNN
exp(600 K) and 

RNN
exp(1100 K), and the spectra of emittance of HN

exp(600 K) and HN
exp(1100 K) are near, 

respectively, to each other. Slight deviation of the wavelengths of interference in the four 

kinds of spectra is not due to the change in the surface state but due to the deviation of the 
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wavelength correction of the two spectrophotometer systems employed. The spectrum of 

HN
exp(600 K) is presumed to be near to that of HN

exp(1100 K) even in the shorter wavelength 

region where the emittance could not be measured at 600 K. 

  2.5.4  Complementary relationship of reflectance and emittance      In the 

measured spectra of reflectance and emittance, wavelengths of hills and valleys in the spectra 

of emittance HN
exp and those of valleys and hills in the spectra of reflectance RNN

exp are near to 

each other. With respect to the absolute values of reflectance RN and emittance HN, a 

complementary relationship of RNN+HN=1 seems to hold in the longer wavelength region of 

O>5 Pm where the influence of surface scattering is weak. In this case, the directional 

reflectance RNN is substantially equal to the 15o-incident hemispherical reflectance RNH, and 

the complementary relationship of RNH+HN=1 holds in this wavelength region. 

     If we would make a simultaneous measurement of the hemispherical reflectance RNH 

and emittance HN, then we might be able to have an experimental result in which the 

complementary relationship of RNH+HN=1 holds over the entire wavelength region including 

the wavelengths of strong surface scattering and interference oscillation. This relationship is 

formally the same as that of Kirchhoff’s law. But, the law holds for the system in the thermal 

equilibrium and does not consider anything on the phase of the electromagnetic wave.  

 

 

3. Theoretical Modeling of Radiation Emission of Film System 

 

3.1  Theory of thermal radiation emission 

  Thermal radiation consists of spherical electromagnetic waves emitted by a number of  

dipoles. An electromagnetic wave emitted by a dipole is assumed to be incoherent to another 

electromagnetic wave emitted by another dipole (Figure 2). On the basis of this assumption, 

we present a theoretical model of an interfered electromagnetic wave of thermal radiation 

emitted by a film system．Behavior of an electromagnetic wave in a film system is formulated 
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combining Planck’s theory of thermal radiation, and we enable the description of an interfered 

emittance spectrum of thermal radiation of a surface film system. 

 

3.2  Model of radiation emission of film system 

  Figure 3 explains the physical model of a film system. The film system consists of a 

single layer of a parallel film of thickness d (medium 1) on a substrate (medium 2). The film 

system faces vacuum space (medium 0). The substrate is a strongly absorbing medium of 

radiation considered. The film is weakly absorbing and semi-transparent for radiation, but the 

self-emission is negligibly weak. The weak absorption does not affect the surface/interface 

reflection and transmission of the electromagnetic wave, and the reflection and transmission 

angles in the film can be dealt as real quantities. The interfaces I and II are assumed to be 

optically flat and smooth. A spherical electromagnetic wave is emitted to medium 1 by an 

infinitesimal area 'A1 which includes a dipole at point O on interface II and in the medium 2 

side. The spherical wave experiences l times (l=0, 1, 2, …) of multiple reflection in the film 

of medium 1 (abbreviated in Figure 3), and is transmitted by interface I. The electric field of 

the l-th order interference wave is formed in an infinitesimal area 'A’ in the vicinity of 

position r’ on interface I and in the medium 0 side. We observe this field at an observation 

point P far from the film system. In the calculation of emission we follow the electric field of 

the spherical wave which is described by complex vector quantities, and evaluate the 

observed energy. 

 

3.3  Formulation of radiation emission wave of film system 

  3.3.1  s- and p-components      First, we determine a coordinate system in which 

the origin is set at a representative point O of the position of a dipole, the emission source of 

radiation. A plane including a unit vector N on point O normal to interface II and a position r’ 

on interface I is named the emission plane (Figure 3). The spherical wave emitted at point O 

is divided into two polarization components. The component oscillating perpendicularly to 
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the emission plane is named s-component, and the component oscillating parallel to the 

emission plane is named p-component. These two components, s-component and p-component, 

are represented by a subscript q (=s, p) in the following. The magnitude and direction of the 

q-component vector of the electric field depend on l of the l-th order wave of the multiple 

reflection of the emitted radiation in the film system.  

  3.3.2  Electric field of spherical wave in film      A spherical wave is emitted at 

point O on interface II to medium 1. The q-component Ê q1(r) of the complex electric field 

vector of the spherical wave is described at position r in medium 1, when the wave has not 

experienced the first reflection, by,  

    Ê q1(r) = 
))exp(-(

2

Oimag 1,real 1, rr xx kk
S

EqOexp(i k ˆ 1�r) 

       = 
)exp(- 

2
O11 rkrn kk

S EqOexp(i k n1r)exp(- k k1r)            (1) 

where,  

    r=|r|                               (2) 

The complex wavenumber vector k ˆ 1 of the spherical wave in medium 1 is described by,  

    k ˆ 1 = k 1, real+i k 1, imag 

      = k n̂ 1r/|r|                          (3) 

In the case of this spherical wave, vectors k 1, real and k 1, imag, the real and imaginary parts of 

the complex vector k ˆ 1, are of the same direction. n̂ 1 is the optical constant of medium 1, k  

and O are wavenumber and wavelength of the electromagnetic wave in vacuum, respectively,  

    n̂ 1=n1+ik1                             (4) 

    k =2S/O                             (5) 

Electric field EqO,  

    EqO= Ê q1(rO)                           (6) 

is that at position rO on a hemisphere centered at point O and of radius,  

    |rO|=rO=2S/( k n1)=O/n1                       (7) 

  3.3.3  Electric field of multiply interfered wave at film surface    The q-component 
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of the complex electric field vector Ê q0l(r’) of the l-th wave of the spherical wave, which is 

emitted at point O, has experienced l times of multiple reflection in the film, and was 

transmitted by the interface I to the position r’ on interface I in the medium 0 side, is 

described by,  

    Ê q0l(r’)=
))exp(-(

2

Oimag, 1, real, 1,

,
llll rr xx kk

S
E qOlexp(i k ˆ 1l �rl’)�( r̂ q10l)l( r̂ q12l)l( t̂ q10l) 

                                    (8) 

where,  

    rl’=r’+2ldN                            (9) 

    N=(0, 0, 1)                            (10) 

    k ˆ 1l = k 1, real, l+i k 1, imag, l 

      = k n̂ 1rl’/|rl’|                         (11) 

    rl’=|rl’|                              (12) 

The electric field EqOl in Eq. (8) characterizes the spherical wave emitted from the 

infinitesimal area 'A1 in the vicinity of point O in medium 2 to medium 1 in the direction 

corresponding to l. It is described by,  

    EqOl=|EqOl| eql                           (12) 

where eql is the (non-dimensional) unit vector in the direction of q-polarization component. 

The unit vector eql is defined by the following equations. 

    esl=(0, 1, 0)                            (13) 

    epl= esl u rl’ / | esl u rl’|                       (14) 

The standard field intensity |EqOl| of the wave is given in Eq. (22) through discussion in 

Section 3.3.4. In Eq. (8) r̂ qijl and t̂ qijl are Fresnel's complex reflection coefficient and  

transmission coefficient, respectively, in the case when the q-polarization component of the 

l-th order wave propagates to interface of medium i and medium j from the medium i side. 

The coefficients are calculated depending on rl’. The complex electric field vector Ê q0(r’) of 

the q-polarization component of superimposed/interfered wave at position r’ on interface I 
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and in the medium 0 side, is described by,  

    Ê q0(r’)=
)exp(-

2

Oimag 1, rxk
S

6l EqOl ĝ ql                   (15) 

where,  

    ĝ ql=  ,

,

 real, 1,

1 )ˆexp(

ll

lli

r

r

x

x

k

k
( r̂ q10l)l( r̂ q12l)l( t̂ q10l)                 (16) 

Since the inner product ( k 1, imag, l�rOl) in the exponential term in the right hand side of Eq. (8) 

does not depend on l, it is written in Eq. (15) by,  

    k 1, imag, l�rOl= k 1, imag�rO                       (17) 

The complex electric field vector Ê 0(r’) for the emission of natural radiation which consists 

of s- and p-polarized components equivalently is written by,  

    Ê 0(r’)=
)exp(-

2

Oimag 1, rxk
S

6q[ 6l EqOl ĝ ql ]                (18) 

  3.3.4  Standard intensity of spherical wave in film    We evaluate the energy 'QqOl 

(unit: W) of the spherical wave which passes an infinitesimal area 'AOl on a hemisphere 

centered at position rO and of radius |rO|=rO (<2d/cosT1l) before the wave experiences the first 

reflection. The angle T1l is the emission angle in medium 1 in the case when the wave has 

experienced l times of multiple reflection in the film. Absorption in medium 1 is assumed to 

be weak enough that the direction of vector k 1, real and that of vector k 1, imag are the same. 

Thus, the angle T1l is a real angle. The energy 'QqOl is described through the time mean 

<Sql(rO)> of the Poynting vector of the wave by,  

    'QqOl = |<S ql(rO)>|'AOl 

       = k n1|EqOl|2'AOl/(2PZ)                    (19) 

where P  and Z  are absolute magnetic permeability of vacuum and angular frequency of the 

electromagnetic wave, respectively.  

From another point of view, this energy 'QqOl of thermally emitted radiation should be 

characterized by Planck’s theory of thermal radiation. The energy 'QqOl is emitted in the solid 
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angle ':Ol (='AOl/rO
2) in the direction of the emission angle T1l and attenuated by the 

absorption medium 1. The energy is described by,  

    'QqOl=Hq21ln1
2

2
BI

exp(-2 k k1rO)'A1cosT1l('AOl/rO
2)            (20) 

where IB is the intensity of blackbody radiation in vacuum. Hq21l is the emittance of medium 2 

to medium 1 for the q-polarized wave. It depends on temperature. At this stage, two 

fundamental theories are combined: electromagnetic description of a spherical wave based on 

the Maxwell’s theory of electromagnetism, and radiative heat transfer description of diffuse 

blackbody radiation based on Planck’s theory of thermal radiation. The emittance Hq21l is 

calculated by using Fresnel’s complex reflection coefficient by,  

    Hq21l=1-| r̂ q12l |2                          (21) 

where Kirchhoff’s law is assumed on the reflected and emitted intensity of radiation on the 

interface II. No assumption on the phase of the emitted spherical wave is adopted here. 

  From Eqs. (6), (19) and (20) intensity |EqOl| of electric field EqOl in Eq. (8) is written by,  

    |EqOl|2 = 
1

2
nk

PZ
Hq21ln1

2

2
BI

exp(-2 k k1rO)'A1cosT1l(
S2

1nk
)2 

       = 2)(2
1
S

2PZk n1Hq21ln1
2

2
BI

exp(-2 k k1rO)rl’2':1l          (22) 

The magnitude rl’ of vector rl’ and solid angle ':1l in this equation are described as follows,  

    rl’=|rl’|=(2l+1)d/cosT1l                       (23) 

    'A1cosT1l':Ol='A’cosT1l':1l                    (24) 

    ':Ol='AOl/rO
2='A’cosT1l/rl’2                    (25) 

    ':1l='A1cosT1l/rl’2                        (26) 

  3.3.5  Intensity of electric field of multiply interfered wave on film surface    The 

magnitude of electric field Ê 0(r’) in Eq. (18) is written through Eqs. (12) and (22) by,  

    || Ê 0(r’)||2  

   = 
)2exp(-

)2(
O1

2

rkk
S

 ||6q[ 6 l EqOl ĝ ql ] ||2 

   = 
)2exp(-

)2(
O1

2

rkk
S

 ||6q[ 6 l |EqOl |eql ĝ ql] ||2 
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   = 
)2exp(-

)2(
O1

2

rkk
S

2)(2
1
S

2PZk n1(n1
2

2
BI

) exp(-2 k k1rO) || 6q[ 6 l Hq21l
1/2rl’ ':1l

1/2eql ĝ ql ] ||2 

   = 2PZk n1(n1
2

2
BI

)||6q[ 6 l Hq21l
1/2rl’ ':1l

1/2eql ĝ ql ] ||2            (27) 

  3.3.6  Conversion of solid angle accompanied by interface transmission    We deal 

with the conversion of the solid angle by the interface transmission of the wave as shown in 

Figure 4. Solid angle ':1l of the wave incident on interface I through an infinitesimal area 

'A’ and solid angle ':0l after the transmission of interface I, are related to each other, by,  

    'A’cosT0l':0l='A’cosT0lsinT0l'I'T0l                 (28) 

    'A’cosT1l':1l='A’cosT1lsinT1l'I'T1l                 (29) 

By using Snell’s equations and the differential form for transparent media [7],  

    sinT0l=n1sinT1l                           (30) 

    'T0lcosT0l=n1'T1lcosT1l                       (31) 

the following equations are obtained. 

    (':0lcosT0l)/(':1lcosT1l) = {(sinT0l)/(sinT1l)}{('T0lcosT0l)/('T1lcosT1l)} 

               = n1
2                   (32) 

    ':1l=(cosT0l/cosT1l)(1/n1
2)':0l                    (33) 

    ':10='A’/(d/cosT10)2                        (34) 

    ':1l = 'A’/{(2l+1)d/cosT1l}2 

      = [(d/cosT10)/{(2l+1)d/cosT1l}]2':10 

      = [cosT1l/{(2l+1)cosT10}]2(cosT00/cosT10)(1/n1
2)':00         (35) 

We notate here symbols ':00, T00 and T10 by simplified ones ':0, T0, and T1, respectively. 

Thus, solid angle ':1l in Eq. (27) is written by,  

    ':1l = [cosT1l/{(2l+1)cosT1}]2(cosT0/cosT1)(1/n1
2)':0          (36) 

  3.3.7  Energy of radiation emitted by film system    The magnitude |<S0(r’)>| of 

time mean of Poynting vector of electric field Ê 0(r’) in Eq. (18) is written by,  

    |<S0(r’)>|=|| Ê 0(r’)||2 k ��/(2PZ)                    (37) 

Radiation energy 'Q0 which passes through the infinitesimal area 'A’ in the vicinity of 
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position r’ is written by,  

    'Q0 = |<S0(r’)>|'A’cosT0 

      = || Ê 0(r’)||2 k ���'A’cosT0/(2PZ)                 (38) 

Accordingly, the energy 'Q0 is written through Eqs. (27) and (36) by,  

    'Q0 = 2PZk n1(n1
2

2
BI

) k ���'A’{cosT0/(2PZ)}|| 6q[ 6 l Hq21l
1/2rl’ ':1l

1/2eql ĝ ql ] ||2 

      = 
1

0

cos

cos

T

T
k 2n1

2
BI

'A’cosT0':0|| 6q[ 6l  Hq21l
1/2rl’

1

1

cos)12(

cos

T

T

�l

l
eql ĝ ql ] ||2 

      = 3
1

0

)(cos

cos

T

T
k 2n1

2
BI

'A’cosT0':0 || 6q[6l  Hq21l
1/2rl’

12

cos 1

�l

lT
eql ĝ ql ] ||2   (39) 

In this equation, only one solid angle ':0, which is equal to the solid angle of observation, is 

included. 

  3.3.8  Emittance of film system    The energy 'Q0 is that the infinitesimal area 'A’ 

on interface I of the film system emits in the solid angle ':0 and in the direction of emission 

angle T0. Let’s consider the case when a blackbody of infinitesimal area 'A’ is put at the same 

point O. Radiation energy 'QB0 emitted by the blackbody in the solid angle ':0 and in the 

emission angle T0 is written by,  

    'QB0=IB'A’cosT0':0                        (40) 

From Eqs. (39) and (40), (spectral directional) emittance H (s+p), film of the film system for 

natural radiation emission is written as follows,  

    H (s+p), film = 'Q0/'QB0 

        = 3
1

0

)(cos

cos

T

T
k 2n1(1/2) || 6q[ 6l Hq21l

1/2rl’
12

cos 1

�l

lT
e q l ĝ ql ] ||2     (41) 

Since the vectors esl and epl cross orthogonally and (6 l esl) and (6 l epl) cross orthogonally, 

emittance Hq, film for s- and p-polarized components of radiation is written by the following 

equation,  

    Hq, film = 3
1

0

)(cos

cos

T

T
k 2n1 || 6l Hq21l

1/2rl’
12

cos 1

�l

lT
eql ĝ ql ||2            (42) 

  Equation (39) for the emitted radiation energy 'Q0 includes IB given by Planck’s theory. 

On the other hand, in Eqs. (41) and (42) for emittances H (s+p), film and Hq, film, IB does not 
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appear. The emittance depends on temperature through the temperature dependence of the 

optical constant of medium 2 (substrate of the film system). 

 

3.4  Procedure of calculation 

  In order to compare the emittance calculated by the proposed model with the measured 

emittance HN
exp(600 K), we calculate on a film system at T=600 K in which a film of d=0.9 

Pm in thickness is formed on a nickel substrate. The spectrum of optical constant n̂ 2 of the 

substrate is calculated as functions of wavelength O of radiation and temperature T, by a 

technique given in Reference [8]. The optical constant of the film is set at n1=2.0 and k1=0.01 

independently of wavelength and temperature. The angle of observation of the emitted 

radiation is set at T0=15o. Emittances H (s+p), film, Hs, film and Hp, film in the wavelength region 

O=0.7~20 Pm are calculated. Multiple reflection in the film is calculated on l=0, 1, 2, … , 10. 

The position vector rl’ is described by,  

    rl’=(dsinT1, 0, dcosT1)                       (43) 

Constants and variables in Eqs. (41) and (42) are calculated by Eqs. (4), (5), (9), (10), (11), 

(13), (14), (16), (21), (23) and (43), and by Snell’s equations and Fresnel’s equations for the 

reflection and refraction at interfaces I and II. In the calculation of Fresnel’s complex 

reflection and transmission coefficients for interface I, the optical constant of the film and the 

reflection and refraction angles at interface I are dealt as real quantities for considering the 

weak absorption of medium 1. 

 

3.5  Reflectance of film system 

  For the comparison in Sections 4 and 5 on measured and calculated values and on 

reflection and emission values, we calculate the reflectance RNN by conventional equations [9], 

on the case when a plane electromagnetic wave is incident on a film system of Section 3.4 

and reflected specularly. 
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4. Calculated Results and Comparison with Measured Results 

 

4.1  Results of spectrum calculation 

  Figure 5 summarizes calculated results of spectra of reflectance RNN and emittance HN of 

the film system with the measured results. Results of reflectance RNN for the natural radiation, 

that for the s-polarized component and that for the p-polarized component are, respectively, 

the spectra of reflectances RNN(s+p)
calc，RNNs

calc and RNNp
calc in the figure. Results of emittance 

HN for the natural radiation, that for the s-polarized component and that for the p-polarized 

component are, respectively, the spectra of emittances HN(s+p)
calc (=H (s+p), film)，HNs

calc (=Hs, film) 

and HNp
calc (=Hp, film) in the figure. Difference of RNN(s+p)

calc，RNNs
calc and RNNp

calc and that of 

HN(s+p)
calc， HNs

calc and HNp
calc are small. Figure 5 also shows the spectra of reflectance 

RNN
calc(specular) and emittance HN

calc(specular) of the bare optically smooth nickel surface for 

comparison. 

 

4.2  Calculated values of reflectance and emittance 

  The calculated reflectance is for the plane wave, and the emittance is for the spherical 

wave. In spite of this difference, wavelengths of the valleys and hills of the oscillation in the 

calculated spectra of reflectance RNN
calc, and those of hills and valleys of the oscillation in the 

calculated spectra of emittance HN
calc are, respectively, near to each other. In this calculation 

on a flat and smooth film system the directional reflectance RNN is equal to the hemispherical 

reflectance RNH. If we assume that Kirchhoff’s law for thermal equilibrium systems is valid, 

then the following complementary relationship,  

    RNN
calc+HN

calc =RNH
calc+HN

calc =1                    (44) 

holds between reflectance RNN
calc and emittance HN

calc. This quantitative relationship seems to 

hold except for the calculated values of RNN
calc and HN

calc in the wavelength regions of 

interference hills in the HN
calc spectrum. In the wavelength regions of interference hills in the 
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HN
calc spectrum, the height of the hills in the emittance spectrum is smaller than the depth of 

the valleys in the RNN
calc spectrum. 

 

4.3  Calculated and measured values of reflectance and emittance 

  We compare the calculated and measured spectra of reflectance and emittance. Since the 

influence of surface roughness of the film system is neglected in the calculation, values of 

reflectance RNN
calc are calculated higher than the measured values of RNN

exp in the shorter 

wavelength region where the influence of surface scattering on the directional reflectance 

RNN
exp is stronger. Since the emittance increase by surface roughness in the surface system of 

the experiment is not considered in the calculation, values of emittance HN
calc are lower than 

those of HN
exp particularly in the shorter wavelength region. Also, since self-emission of the 

film is neglected in the calculation, the values of the calculated emittance HN
calc are lower. But, 

with respect to the radiation interference, the wavelengths of interference in the calculated 

spectra of RNN
calc and HN

calc agree well with those in the measured spectra of RNN
exp and HN

exp. 

The hills of interference in the calculated spectrum of HN
calc are less sharp than the hills of 

interference in the measured spectrum of HN
exp. 

 

 

5. Interference of Emitted Thermal Radiation 

 

5.1  Wavelength of interference and phase of spherical wave 

  Interference in an emittance spectrum for a spherical wave is different from that in a 

reflectance spectrum for a plane wave. The interference occurs as a result of multiple 

reflection in the film system. The spherical wave propagates over various directions. This fact 

may imply that the wavelengths of interference depend on the direction of observation, and 

that the emittance spectrum lacks the sharpness in the spectrum oscillation. But, it is not the 

case in the measured results in Figure 5. It is explained by the following facts. The refractive 
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index of the film is of an order of n1=2, and the radiation in the direction of emission angle of 

15o, the angle of observation in the present study, is the interfered components of spherical 

waves emitted by a dipole on interface II of the film system and propagates in the direction of 

Tl <7.4o in the film. That is, direction, phase and wavelength of the interference of the 

observed emission wave are not so much different from those in the case of the reflection of 

the plane wave. 

 

5.2  Sharpness and amplitude of spectrum oscillation 

  The amplitude of interference oscillations in the calculated emittance spectrum is not so 

sharp as that in the calculated reflectance spectrum. The following should be noticed. The 

interference of the wave in the film system occurs mainly among the 0th-order wave (l=0) and 

the 1st-order wave (l=1). In a weakly absorbing medium, intensity of a spherical wave is 

attenuated inversely proportional to the square of the distance from the radiation source. The 

intensity of the 1st-order wave decreases in the film to be 1/9 of that of the 0th-order wave. 

Equivalent interference of the 1st- and 0th-order waves, as is the case in the film reflection of 

plane waves, can not be realized in the case of emitted spherical waves. Therefore 

interference in the calculated emittance spectrum is far less clear than that in the calculated 

reflectance spectrum. 

 

5.3  Interference of radiation emitted by a number of dipoles 

  The present theoretical model describes the interference of the emitted thermal radiation 

qualitatively well. But, the spectrum oscillation in the calculated emittance spectrum is less 

sharp than that in the measured emittance spectrum, and the values of the calculated 

emittance are lower than those of the measured emittance. Since the roughness of the surface 

of the experiment influences the measured spectrum to round the interference effect in the 

oscillating spectra and to increase the values of emittance inversely, it cannot be the origin of 

the deviation of the calculated and measured emission spectra. With respect to the sharpness 
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of the spectrum oscillation, the measured emittance spectrum is rather near to the measured 

reflectance spectrum. This point is important in considering the validity of the model 

proposed in Section 3. Considering the discussion in Sections 4.3 and 5.2, the deviation in 

calculated and measured emission spectra may be caused by the assumption in Section 3.1 on 

the incoherency of the emitted radiation wave by a number of dipoles in the metal substrate. 

  In the present film system the radiation sources of the dipole emission are conduction 

electrons of a metal. Thermal movement of a number of conduction electrons might not be 

independent among each other, but the electromagnetic fields of the emitting dipoles might 

interact with each other. Electromagnetic waves of thermal radiation emitted by a number of 

dipoles in the metal might be coherent among each other. If it is the case, the electromagnetic 

field of multiple reflection of the spherical waves in the film system which emits thermal 

radiation may be similar to the field of multiple reflection of the plane waves of the reflection. 

Theoretical calculation on such a model of coherent dipole emission sources would estimate 

that the interference of the waves of l=0 and l=1, 2, 3, … can be similar to that in the case of 

reflection of a plane wave, and the interference in the emittance spectrum as sharp as that in 

the measured spectrum. 

 

5.4  Spectrally functional emitter of thermal radiation 

  In the measured emittance spectra in Figure 5, emittance is high in the longer 

interference hill wavelength region. The present film system emits the radiation of the 

wavelength band region selectively. On the other hand, radiation energy in the shorter 

wavelength side less than O =2 Pm is weak for the sake of Planck’s distribution at the 

temperature of a 600 K level irrespective of the higher emittance values in the shorter 

wavelength region. That is, the spectral function of the present film system is excellent. The 

wavelength of interference of the film system is easily controlled in the film formation 

process as shown in Figure 1. The film system can be produced easily over a wide surface 

area of an order of m2. The present film system is prospective for a radiation emitter for the 
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new thermal energy engineering. 

 

 

6. Concluding Remarks 

 

  In the present study, a spectroscopic experiment and a model calculation of 

electromagnetism have been made on a spherical wave of thermal radiation emitted by a film 

system which consists of a metal substrate and a semi-transparent film. The following 

conclusions have been made: 

  (1)  It has been reconfirmed experimentally that thermal radiation emitted by this film 

system is characterized by a clear interference phenomenon. 

  (2)  A theoretical model has been presented to describe the interference in thermal 

radiation emission of this film system. In the model an electromagnetic theory for a spherical 

wave is combined with Planck’s theory of thermal radiation. 

  (3)  It has been suggested that thermal radiation waves emitted by a number of dipoles 

of a metal might be coherent among each other. 

  (4)  This film system is prospective as a spectrally functional emitter of radiation which 

emits radiation in a specified wavelength band region selectively. 
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Figure Captions 

 

Figure 1 Spectrum transition of reflectance RNN and emittance HN of a nickel surface in a 

film formation process 

Figure 2  Interference of thermal radiation emitted by a film system 

Figure 3  Physical model of a film system 

Figure 4  Conversion of solid angles for the l-th spherical wave 

Figure 5 Spectra of reflectance RNN and emittance HN of the film system (measured and 

calculated) 
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Figure 1 Spectrum transition of reflectance RNN and emittance HN of a nickel surface in a 

film formation process 
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Figure 2  Interference of thermal radiation emitted by a film system 
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Figure 3  Physical model of a film system 
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Figure 4  Conversion of solid angles for the l-th spherical wave 
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Figure 5  Spectra of reflectance RNN and emittance HN of the film system (measured and 

calculated) 

 


