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Abstract 1 

   Obesity is known to be a risk factor for colon carcinogenesis. Although there are 2 

several reports on the chemopreventive abilities of dietary flavonoids in chemically 3 

induced colon carcinogenesis, those have not been addressed in an obesity-associated 4 

carcinogenesis model. In the present study, the effects of 3 flavonoids on modulation of 5 

the occurrence of putative preneoplastic lesions, aberrant crypt foci (ACF), and 6 

β-catenin accumulated crypts (BCACs) in the development of colon cancer were 7 

determined in male db/db mice with obesity and diabetic phenotypes. Male db/db mice 8 

were given 3 weekly intraperitoneal injections of azoxymethane (AOM) to induce the 9 

ACF and BCAC. Each flavonoid (100 ppm), given in the diet throughout the 10 

experimental period, significantly reduced the numbers of ACF by 68-91% and BCAC 11 

by 64-71%, as well as proliferation activity in the lesions. Clinical chemistry results 12 

revealed that the serum levels of leptin and insulin in mice treated with AOM were 13 

greater than those in the untreated group. Interestingly, the most pronounced 14 

suppression of development of preneoplastic lesions and their proliferation were 15 

observed in the quercetin-fed group, in which the serum leptin level was lowered. 16 

Furthermore, quercetin-feeding decreased leptin mRNA expression and secretion in 17 

differentiated 3T3-L1 mouse adipocytes. These results suggest that the present dietary 18 

flavonoids are able to suppress the early phase of colon carcinogenesis in obese mice, 19 

partly through inhibition of proliferation activity caused by serum growth factors. 20 

Furthermore, they indicate that certain flavonoids may be useful for prevention of colon 21 

carcinogenesis in obese humans.  22 

23 
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Introduction 1 

    2 

   Epidemiological studies have shown that obesity is an important cofactor for several 3 

types of cancer, including colorectal cancer [1]. Recently, a prospective population 4 

based study of about 90000 subjects conducted by the American Cancer Society 5 

confirmed that obesity is directly associated with an increased risk of death from colon 6 

cancer [2]. In addition, animal studies have also suggested that obesity enhances tumor 7 

development [3], while calorie restriction was reported to inhibit a broad range of 8 

spontaneous, transplanted, and chemically induced neoplasms [4].  9 

   Leptin, a 16-kDa protein encoded by the ob gene, was first documented in 1994 as a 10 

regulator of body weight gain and energy balance, with its activities displayed in the 11 

hypothalamus [5]. It is well known that serum leptin levels are highly elevated in obese 12 

individuals [6] and the protein is mainly secreted by white adipocytes [7]. 13 

C57BL/KsJ-db/db (db/db) mice are often used as a genetically altered animal model 14 

with the genotypes of obesity and diabetes mellitus [8]. In this mouse strain, a mutation 15 

in the cytoplasmic domain of the long form of the leptin receptor (Ob-Rb) results in loss 16 

of expression of this isoform [9]. In the absence of Ob-Rb, the mice eat excessively and 17 

are already obese at 4 weeks of age. Furthermore, they are also demonstrate 18 

hyperleptinemia, hyperinsulinemia, hyperglycemia, and hyperlipidemia, as well as 19 

increased levels of cholesterol in plasma [10]. The synthesis of leptin in adipocytes, 20 

which may be involved in neoplastic processes, is influenced by insulin, tumor necrosis 21 

factor-α, glucocorticoids, reproductive hormones, and prostaglandins [11]. In addition, 22 

leptin can act as a growth factor in colonic epithelial cells [12], while it also modulates 23 

the proliferation of colonic cryptal cells [13]. Since leptin might be one of the biological 24 
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factors involved in the development of colorectal cancer associated with 1 

obesity/diabetes, db/db mice are quite useful as a model for elucidating the relationship 2 

between colon carcinogenesis and obesity/diabetes.  3 

   Flavonoids comprise a structurally diverse class of polyphenolic compounds 4 

ubiquitously found in plants and produced as a result of plant secondary metabolism 5 

[14]. They have several biological effects, such as anti-oxidative and anti-inflammatory 6 

activities [15]. We previously reported that chrysin [16], quercetin [17], and nobiletin 7 

[18] showed chemopreventive effects toward azoxymethane (AOM)-induced colon 8 

carcinogenesis in rats. In addition, administration of green tea polyphenols, including 9 

epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin gallate, resulted 10 

in a significant reduction in body weight gain and body fat accumulation in rodents [19, 11 

20]. Furthermore, an in vitro study found that certain flavonoids inhibit the growth of 12 

3T3-L1 pre-adipocytes [21]. However, there are known no studies of the effects of 13 

flavonoids on obesity-associated carcinogenesis. 14 

   In the present study, we first determined the modulatory effects of 6 different 15 

flavonoids; flavone, chrysin, apigenin, luteolin, quercetin, and nobiletin (Figure 1A), on 16 

leptin secretion from 3T3-L1 cells. Next, we evaluated the effects of dietary chrysin, 17 

quercetin, and nobiletin on the occurrence of AOM-induced aberrant crypt foci (ACF) 18 

and β-catenin-accumulated crypts (BCACs), putative precursor lesions for colonic 19 

adenocarcinoma [22, 23], in db/db male mice. We also investigated those 3 flavonoids 20 

to determine their effects on clinical chemistry related to the occurrence of colorectal 21 

cancer [24]. Since we previously observed high proliferation activities in preneoplastic 22 

colonic lesions and non-lesional crypts in db/db mice [25], the effects of these 23 

flavonoids in regard to proliferation activity in ACF and BCAC were analyzed using an 24 
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immunohistochemical methods.   1 

 2 

Materials and Methods 3 

 4 

Cell culture 5 

3T3-L1 mouse pre-adipocytes were obtained from the American Type Culture 6 

Collection (ATCC, Manassas, VA). The cells were maintained in Duibecco’s Modified 7 

Eagle Medium (DMEM) supplemented with 10% bovine serum (BS), as well as 100 8 

U/ml of penicillin and 100 µg/ml of streptomycin at 37°C in a humidified 5% CO2 9 

atmosphere. 10 

 11 

Intracellular lipid accumulation and leptin secretion 12 

3T3-L1 cells (1 x 104/200 µl/well) were seeded into 96-well plates under the growth 13 

conditions described above. After reaching confluence, they were incubated for an 14 

additional 24 hours (designated as day 0). Then, adipocyte differentiation was induced 15 

by treatment with a mixture of methylisobutylxanthine (0.5 mM), dexamethasone (1 16 

µM), and insulin (10 µg/ml), components of an Adipogenesis Assay Kit (Chemicon 17 

International, Temecula, CA), in DMEM containing 10% FBS for 48 hours. The 18 

medium was then replaced by DMEM containing 10% fetal bovine serum (FBS) and 19 

insulin (5 µg/ml), and changed to fresh medium every 2 days, according to a method 20 

previously described by Maeda et al. [26], with some modifications. On day 2, each 21 

flavonoid (10, 50, and 100 µM) was dissolved in dimethyl sulfoxide (DMSO), then 22 

added to DMEM containing FBS and insulin. The final concentration of DMSO was 23 

0.1% (v/v), which was found to have no effect on cell growth (data not shown). After 12 24 
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days, the medium was collected and subjected to ELISA to determine the levels of 1 

leptin. The cells were stained with the Oil Red-O component of an Adipogenesis Assay 2 

Kit, according to the manufacturer’s instructions. Stained oil droplets in 3T3-L1 cells 3 

were extracted with dye extraction solution and absorbance of the extracts was 4 

measured at 490 nm. 5 

 6 

Mice, diet, and carcinogens 7 

   Male db/db mice were obtained from Jackson Laboratories (Bar Harbor, ME) at the 8 

age of 4 weeks and maintained at the Kanazawa Medical University Animal Facility 9 

according to the Institutional Animal Care Guidelines. On arrival, all mice were 10 

randomized and transferred to plastic cages (2 or 3 mice/cage), and given free access to 11 

drinking water and a pelleted basal diet (CRF-1, Oriental Yeast Co., Tokyo, Japan), 12 

under controlled conditions of humidity (50 ± 10%), light (12/12 hour light/dark cycle), 13 

and temperature (23 ± 2ºC). All mice were quarantined for 1 week before starting the 14 

experiment. Nobiletin (>98% purity) was obtained from Nard Chemicals (Hyogo, 15 

Japan), while other flavonoids were purchased from WAKO Pure Chemicals (Osaka, 16 

Japan). Experimental diets were prepared by mixing each flavonoid (100 ppm) 17 

separately with powdered CRF-1 every week during the study. Azoxymethane (AOM), 18 

a colonic carcinogen, was purchased from Sigma Chemical Co. (St. Louis, MO). 19 

 20 

Experimental procedures 21 

   All mice were divided into the following 8 experimental and control groups: AOM 22 

alone (group 1, n=9); AOM + chrysin (group 2, n=10); AOM + quercetin (group 3, 23 

n=10); AOM + nobiletin (group 4, n=10); chrysin alone (group 5, n=5); quercetin alone 24 
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(group 6, n=5); nobiletin alone (group 7, n=5); and untreated (group 8, n=5). The mice 1 

in groups 1-4 were given 3 weekly intraperitoneal injections of AOM (15 mg/kg body 2 

weight), while those in groups 2 through 7 were fed the experimental diets containing 3 

the flavonoids (100 ppm) for the entire 10-week experimental period. Groups 1 and 2 4 

were given the basal diet without flavonoids during the study. At week 10, all mice were 5 

euthanized after overnight fasting by an intraperitoneal injection of sodium 6 

pentobarbital (1 mg/kg body weight). Blood samples were taken from the portal vein 7 

before the mice were killed. A complete necropsy was done, and all organs, including 8 

the colon, were removed, with the liver, kidneys, pancreas, and epididymal adipose 9 

tissue weighted.  10 

 11 

Counting colonic ACF and BCAC 12 

The numbers of ACF and BCAC were determined according to standard procedures 13 

described previously [27, 28]. Briefly, the colons were cut, placed on filter paper with 14 

the mucosal surface up, and fixed in 10% buffered formalin for at least 24 hours. The 15 

fixed colons were stained with methylene blue (0.5% in distilled water) for 20 seconds, 16 

dipped in distilled water, and placed on microscope slides to count the number and 17 

determine the size of ACF. Rectal mucosa (2.0 cm from the anus) was embedded in 18 

paraffin to identify intramucosal lesions, considered to be BCAC. A total of 20 serial 19 

sections (4 µm thick each) per rectum were prepared using an en face method [28]. For 20 

each mouse, 2 serial sections were used to analyze the BCAC. The numbers of BCAC 21 

in histological sections stained with β-catenin were counted and are expressed as the 22 

number of BCAC per cm2 of mucosa. 23 

 24 
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Immunohistochemistry of β-catenin and PCNA  1 

   Immunohistochemistry for β-catenin was performed using sections from the distal 2 

colon segments with a labeled streptavidin-biotin method (LSAB Kit; Dako, Glostrup, 3 

Denmark) and microwave accentuation. Paraffin-embedded sections were heated for 30 4 

minutes at 65ºC, deparaffinized in xylene, and rehydrated through a graded series of 5 

alcohol at room temperature. A 0.05-M Tris-HCl buffer (pH 7.6) was used to prepare the 6 

solutions and for washing between the steps. The sections were treated for 40 minutes at 7 

room temperature with 2% bovine serum albumin and incubated overnight at 4ºC with 8 

the primary antibody against β-catenin protein (diluted 1:1000, BD Transduction 9 

Laboratories, Lexington, KY). Horseradish peroxidase activity was visualized by 10 

treatment with H2O2 and diaminobenzidine for 5 minutes. Negative-control sections 11 

were immunostained without the primary antibody. Immunoreactivity to determine the 12 

presence of BCAC was regarded as positive if apparent staining was detected in the 13 

cytoplasm and/or nuclei.  14 

   For PCNA immunohistochemistry, formalin-fixed, paraffin-embedded distal colon 15 

sections were subjected to deparaffinization and dehydration prior to quenching of 16 

endogenous peroxidase activity (1.5% H2O2 in methanol for 20 minutes). An 17 

antigen-unmasking step was done by placing the slides in a pressure cooker containing 18 

0.01 M sodium citrate (pH 6.0) for 10 minutes. The sections were incubated for 60 19 

minutes with the primary mouse anti-rat PCNA monoclonal antibody (Clone PC-10, 20 

DakoCytomation) at a dilution of 1:1500 in 10% goat serum. A secondary antibody, 21 

biotinylated goat anti-mouse IgG (Vector Laboratories, Burlingame, CA), was then 22 

applied for 30 minutes in a 1:500 dilution. Slides were processed with ABC reagent 23 

from a Vectastain Elite kit (Vector Laboratories) using DAB as the substrate. Using 24 
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distal colonic mucosa without lesions from 5 mice in each group, 20 fields were 1 

randomly selected from each slide and analyzed at 400x magnification. PCNA-positive 2 

cell nuclei were determined in 10 ACF and 10 BCAC each from groups 1 through 4. 3 

Cells stained positive for PCNA were scored and expressed as a percentage of total cells 4 

in each lesion. 5 

 6 

Clinical chemistry 7 

The collected blood samples were used for clinical chemistry. Leptin (Quantikine 8 

Mouse leptin, ELISA/Assay Kit, R&D Systems Inc.), adiponectin (Mouse/Rat 9 

adiponectin ELISA kit, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan), insulin-like 10 

growth factor (IGF)-1 (Quantikine Mouse IGF-1, ELISA/Assay Kit, R&D Systems Inc.), 11 

insulin (Insulin measurement kit, Morinaga Institute of Biological Science), 12 

triglycerides (Triglyceride E-test, Wako Pure Chemical Industries), cholesterol 13 

(Cholesterol E-test, Wako Pure Chemical Industries), and glucose (Glucose CII-test 14 

Wako, Wako Pure Chemical Industries) levels were measured. Serum samples without 15 

dilution were used for determining insulin, triglycerides, cholesterol, and glucose, while 16 

those diluted 100-, 10201-, and 500-fold were used for determining the levels of leptin, 17 

adiponectin, and IGF-1, respectively.  18 

 19 

Western blotting 20 

3T3-L1 cells (1× 105/3 ml/dish) were seeded into 35-mm dishes following 21 

treatment with quercetin or nobiletin, then washed twice with PBS and lysed in lysis 22 

buffer [10-nM Tris (pH 7.4), 1% sodium dodecyl sulfate (SDS), 1-mM sodium 23 

metavanadate (V)], and centrifuged at 3200 x g for 5 minutes. Denatured proteins (40 24 
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µg) were separated using SDS-PAGE on a 10% polyacrylamide gel and then transferred 1 

onto Immobilon-P membranes (Millipore, Billerica, MA). After blocking with Block 2 

Ace (Snow Brand Milk Products, Tokyo, Japan) for 1 hour, the membranes were reacted 3 

with the appropriate specific primary antibody (1:1000), followed by the corresponding 4 

HRP-conjugated secondary antibody (1:1000). The blots were developed using ECL 5 

Western blotting detection reagents. Antibodies directed against Pi- mitogen-activated 6 

protein kinase/ extracellular signaling-regulated kinase (MEK)1/2 (Ser217/221), 7 

Pi-extracellular signaling-regulated kinase (ERK)1/2 (Thr202/Tyr204), Pi-mammalian 8 

target of rapamycin (mTOR) (Ser2448), Pi-S6 (Ser240/244), and Pi-eukaryotic initiation 9 

factor 4B (eIF4B) (Ser422), as well as horseradish peroxidase (HRP)-conjugated 10 

anti-rabbit antibody, were obtained from Cell Signaling Technology (Beverly, MA). 11 

 12 

Reverse transcription-polymerase chain reaction (RT-PCR) 13 

   Total RNA was extracted from the cells under the same conditions used for Western 14 

blotting using TRIzol reagent, according to the manufacturer’s instructions. cDNA was 15 

synthesized using 1 µg of total RNA and an RNA PCR Kit (AMV). PCR amplification 16 

was performed using a thermal cycler (PTC-100TM, MJ Research, Watertown, MA), and 17 

conducted with each sense and antisense primer. The primer sequences and PCR 18 

conditions are listed in Table 1. A cyclophilin transcript served as the internal control. 19 

PCR products were subjected to electrophoresis through 3% agarose gels and stained 20 

with SYBR○R  Gold.  21 

 22 

Statistical analysis 23 

Where applicable, data were analyzed using a Tukey-Kramer multiple comparison 24 
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test (GraphPad InStat version 3.05, GraphPad Software, San Diego, CA), Fisher’s exact 1 

probability test, and Student’s t-test (two-sided), with P < 0.05 as the criterion of 2 

significance. 3 

 4 

Results 5 

    6 

Modulatory effects of flavonoids on Oil Red-O staining and leptin secretion 7 

   Adipocyte differentiation was induced by treatment with a mixture of 3-isobutyl-1- 8 

methylxanthine, dexamethasone, and insulin in DMEM containing 10% FBS for 48 9 

hours, after which differentiated 3T3-L1 adipocytes were separately treated with the 6 10 

flavonoids (10 µM) or the vehicle for 12 days to determine their effects on intracellular 11 

lipid accumulation and leptin secretion. Differentiated 3T3-L1 cells were notably loaded 12 

with lipid, as detected by Oil Red-O staining, whereas none of the flavonoids had 13 

noticeable effects (Figure 1B). On the other hand, quercetin and nobiletin significantly 14 

reduced leptin secretion (P < 0.01, Figure 1B), with the reduction by nobiletin 15 

remarkable.  16 

 17 

General observations of in vivo experiment 18 

   We selected 3 of the flavonoids, chrysin, quercetin, and nobiletin, for the in vivo 19 

experiment based on their chemopreventive efficacy previously shown in colon 20 

carcinogenesis models [16-18], together with the present data regarding leptin secretion 21 

(Figure 1B). To investigate the effects of these flavonoids on the early phase of 22 

obesity-related carcinogenesis and serum levels of leptin, we performed short-term in 23 

vivo assays using histological biomarkers, ACF and BCAC, in the db/db mice. During 24 



 Miyamoto 12 

the study, dietary feeding with the flavonoids did not cause clinical symptoms, including 1 

toxicity (data not shown). Food consumption did not significantly differ among the 2 

groups. In addition, we did not observe significant changes in regard to body weight 3 

gain, epididymal fat weight, or colon length (Table 2). In contrast, the pancreas weight 4 

was significantly increased in group 3 (AOM + quercetin, P < 0.05) when compared 5 

with group 1 (AOM alone).  6 

 7 

Frequency of preneoplastic lesions (ACF and BCAC) and PCNA-labeling index 8 

Histological examinations revealed no pathological lesions in any organs except the 9 

colon. Table 3 summarizes data for colonic ACF and BCAC formation. All mice in 10 

groups 1 through 4, which received AOM with or without a flavonoid, developed ACF. 11 

In groups 5 through 8, there were no microscopically observable changes, including 12 

ACF and BCAC, in our examinations of colonic morphology. The mean number (± SD) 13 

of ACF per colon in group 1 was 25.6 ± 8.9. Dietary administration of chrysin, 14 

quercetin, and nobiletin significantly reduced ACF incidence by 91%, 89%, and 68%, 15 

respectively (P < 0.001 versus group 1), while we also saw a significant reduction 16 

(85-100% inhibition, P < 0.001) in the numbers of large ACF containing 4 or more 17 

aberrant crypts, which are known to be well-correlated with the incidence of colonic 18 

adenocarcinoma [29-31], when compared with group 1 (12.5 ± 9.7). Also, large ACF 19 

did not develop in the colons of mice in group 3 (AOM + quercetin). As shown in Table 20 

3, the numbers of BCAC per cm2 in groups 2 (65% inhibition, P < 0.001), 3 (71% 21 

inhibition, P < 0.001), and 4 (64% inhibition, P < 0.001) were significantly fewer than 22 

that in group 1 (12.5 ± 9.7).  23 

As summarized in Table 3, the mean PCNA-labeling indices of BCAC were greater 24 
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than those of ACF in groups 1 through 4. ACF indices in the mice that received dietary 1 

flavonoids (28% reduction by chrysin, P < 0.05; 30% reduction by quercetin, P < 0.001; 2 

and 20% reduction by nobiletin, P < 0.05) were significantly smaller than that of mice 3 

that received AOM alone (group 1, 39.1 ± 5.2). Also, feeding with chrysin (26% 4 

reduction, P < 0.001), quercetin (41% reduction, P < 0.001), and nobiletin (19% 5 

reduction, P < 0.001) significantly lowered index for BCAC when compared with group 6 

1 (48.8 ± 6.0).   7 

 8 

Serum levels of leptin, adiponectin, IGF-1, insulin, triglyceride, cholesterol, and 9 

glucose 10 

   Serum profile data are listed in Table 4. The serum concentration of leptin in group 11 

1 was significantly greater (67% increase) than that in group 8 (untreated, P < 0.05), 12 

while dietary administration of quercetin significantly decreased the serum leptin level 13 

by 31% (P < 0.05) when compared with group 1. Chrysin feeding also decreased the 14 

serum leptin level (11% decrease), though it was not significant. Dietary nobiletin did 15 

not have an effect on the level of leptin in serum. The serum level of adiponectin in 16 

group 1 was significantly higher than that in group 8 (P < 0.05). However, dietary 17 

administration with the flavonoids (groups 2 through 4) did not have any effects on 18 

serum adiponectin levels. The serum level of IGF-1 in group 1 was comparable to that 19 

in group 8. Dietary flavonoids (groups 2 through 4) decreased the level, though the 20 

differences were not significant. Treatment with the different flavonoids did not have a 21 

significant effect on the increase of insulin in serum caused by AOM administration. 22 

There were no marked differences in regard to the levels of triglyceride, cholesterol, and 23 

glucose among the groups. 24 
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 1 

Quercetin inhibition of leptin mRNA expression 2 

   The Akt/mTOR signaling pathway, including eIF4B, is considered to play a crucial 3 

role as a regulator of adipogenesis [32] and leptin secretion [33]. Our previous study 4 

indicated that nobiletin decreased the phosphorylation state of eIF4B partly through 5 

inactivation of MEK/ERK [34]. Therefore, we investigated the effects of quercetin on 6 

the mTOR signaling pathway, because it exhibited a profound suppressive effect on 7 

leptin production in vivo. Unexpectedly, the phosphorylation state of Akt, ERK, eIF4B, 8 

and S6 was increased in quercetin-treated cells, while nobiletin abolished the increase, 9 

as previously reported [34] (Figure 2A). The differing effects obtained by treatments 10 

with quercetin and nobiletin led us to examine whether quercetin has an effect on the 11 

expression of leptin mRNA. It is well known that CCAAT/enhancer binding protein 12 

(C/EBP)α is an important transcription factor of leptin. Peroxisome proliferator- 13 

activated receptor (PPAR)γ plays an important role in adipocyte differentiation, though 14 

several PPARγ agonists, including thiazolidinediones, were shown to repress leptin gene 15 

expression in adipocytes [35]. In the present study, quercetin and troglitazone 16 

significantly reduced leptin mRNA expression, while they did not reduce the level of 17 

C/EBPα expression (Figure 2B). Of interest, inverse correlations for mRNA expression 18 

between leptin and PPARγ were observed for quercetin and troglitazone (Figure 2B). 19 

 20 

Discussion 21 

 22 

   Our results clearly indicate that dietary administration of the flavonoids chrysin, 23 

quercetin, and nobiletin leads to suppression of the development of precursor lesions 24 
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(ACF and BCAC) induced by AOM in obese mice, in part by reducing the proliferation 1 

activity of the lesions. The order of chemopreventive ability in the present findings was 2 

quercetin > chrysin > nobiletin, which is consistent with our previous reports [16, 25]. 3 

Interestingly, the tested flavonoids, particularly quercetin, lowered the levels of growth 4 

factors in serum, especially leptin.  5 

   The high susceptibility of db/db mice to colon carcinogenesis might be related to 6 

high proliferation activities of normal crypts and pre-neoplasms. Obesity itself along 7 

with high levels of serum cholesterol, triglycerides, glucose, insulin, and leptin have 8 

been suggested to explain that elevated susceptibility [25]. Recently, leptin was reported 9 

to act as a mitogenic factor in cultured human colon cancer cells [36] and mouse colon 10 

carcinogenesis [34]. Hyperinsulinemia has also been hypothesized to be an underlying 11 

factor linking obesity, type 2 diabetes mellitus, and colon tumorigenesis [37]. As for the 12 

mechanism of action, insulin resistance is associated with hyperinsulinemia and 13 

increased levels of growth factors including IGF-1, which may promote colon 14 

carcinogenesis through their effects on colonic cryptal cell kinetics [38]. In this context, 15 

a recent report showing that leptin interacts with IGFs to promote the survival and 16 

expansion of APC deficient colonic epithelial cells, but not of those expressing 17 

wild-type APC, is interesting [39].  18 

In the present study, the tested dietary flavonoids did not have effects on body 19 

weight gain, epididymal fat pad weight, or food intake. However, quercetin markedly 20 

lowered serum leptin and insulin concentrations, which were elevated by injection of 21 

AOM. Importantly, treatment with each flavonoid alone (groups 5 through 7) did not 22 

have an influence on the level of leptin as compared with the control group (Table 4). 23 

However, feeding with the flavonoids decreased the serum levels of IGF-1. Although, it 24 
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is not clear how each of the flavonoids in this study reduces the serum concentrations of 1 

these growth factors, such reduction may lead to suppression of proliferation activity in 2 

preneoplastic lesions. Quercetin modulates several signal transduction pathways 3 

involving MEK/ERK, which are associated with proliferation of several types of cancer 4 

cells [40], while nobiletin inhibits the proliferation of a variety of human cancer cell 5 

lines, partly due to induction of G1 cell cycle arrest [41]. In addition, chrysin induces 6 

G2/M cell-cycle arrest in human colon carcinoma SW480 cells [42]. Together with our 7 

findings, it is suggested that the reduction of proliferation in preneoplastic lesions (ACF 8 

and BCAC) caused by each flavonoid is related to induction of cell-cycle arrest in 9 

aberrant cells. 10 

 Leptin release is influenced by the amount of leptin mRNA expression in adipocytes. 11 

That release is regulated by not only the mTOR signaling pathway, but also leptin 12 

mRNA transcription, which is activated during adipocyte differentiation. C/EBPα, 13 

which belongs to the C/EBP family of transcription factors, plays a central role in the 14 

control of energy homeostasis and is expressed during the terminal phase of 15 

differentiation immediately prior to the expression of many adipose-specific genes [43]. 16 

The PPAR family of proteins also plays an important role in adipocyte differentiation 17 

[44]. Taken together, logical candidate transactivators of the leptin promoter include 18 

C/EBPα and PPARγ. In fact, the proximal promoter of the leptin gene contains a 19 

functional C/EBP-binding site, which mediates activation of the leptin promoter by 20 

co-transfected C/EBPα in 3T3-L1 pre-adipocytes. However, it is surprising that PPARγ 21 

agonists, e.g., thiazolidinediones, were found to down-regulate leptin mRNA levels [35]. 22 

Furthermore, since the putative PPARγ response element in the leptin promoter is not 23 

involved in negative regulation, it has been hypothesized that PPARγ functionally 24 
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antagonizes C/EBPα to decrease transcription in response to thiazolidinediones [45].  1 

In the present study, quercetin significantly reduced the mRNA expression of leptin, 2 

but not that of C/EBPα, while it up-regulated PPARγ mRNA expression, as did 3 

troglitazone (Figure 2B). Consistent with our findings, Fang et al. recently reported that 4 

quercetin inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes by acting as 5 

a potential agonist of PPARγ [46]. Furthermore, their competitive ligand-binding assay 6 

confirmed that quercetin competes with rosiglitazone in the same binding pocket site as 7 

PPARγ. Thus, it is likely that quercetin affects leptin secretion from white adipose tissue 8 

in db/db mice by acting as a PPARγ agonist. We previously observed that nobiletin 9 

suppresses hyperleptinemia in ICR mice given AOM and dextran sulfate sodium [34]. 10 

However, no effects of nobiletin were found in the present db/db mice that received 11 

AOM (Table 4). Since nobiletin suppresses leptin secretion partly by repression of the 12 

insulin signaling pathway in 3T3-L1 cells, the differences between the biochemical 13 

effects induced by quercetin and nobiletin may explain why the former and not the latter 14 

suppresses serum leptin levels in AOM-treated db/db mice. 15 

In summary, the present results provide additional evidence that certain daietary 16 

flavonoids are potent to inhibit the early phase of colon carcinogenesis in genetically 17 

altered obese mice, partly through reduction of proliferation. Those effects were also 18 

shown to be related to lowered serum levels of leptin, insulin, and IGF-1. This study 19 

investigated the effects of selected flavonoids on colonic pre-malignancy by focusing on 20 

lowered levels of serum growth factors, thus additional studies of the exact mechanisms 21 

are needed for development of prevention and treatment strategies for obesity-related 22 

colonic malignancies.  23 

 24 
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Figure legends 1 

 2 

Fig. 1. (A) Chemical structures of the studied flavonoids. (B) Modulatory effects of the 3 

flavonoids on leptin secretion from 3T3-L1 cells. 3T3-L1 mouse pre-adipocytes 4 

were induced to adipocyte differentiation with a mixture of 5 

methylisobutylxanthine (0.5 mM), dexamethasone (1 µM), and insulin (10 6 

µg/ml) in DMEM containing 10% FBS for 48 hours. Differentiated 3T3-L1 cells 7 

were treated with DMSO alone or various concentrations of nobiletin for 12 8 

days, then the supernatants were removed for measurements of leptin. The cells 9 

were washed twice with PBS and stained with Oil Red-O. Stained cells were 10 

viewed under an inverted microscope (Leica Microsystems, Tokyo, Japan) 11 

(original magnification 1: 200). Leptin secretion was quantified by ELISA. 12 

Values are shown as the mean ± SD. Statistical analysis was performed using 13 

Student’s t-test: P<0.05.  14 

 15 

Fig. 2. (A) Modulatory effects of quercetin, nobiletin, and rapamycin on the Akt/mTOR 16 

signaling pathway in differentiated 3T3-L1 cells. (B) Modulatory effects of 17 

quercetin and troglitazone on the expression of transcription factors in 18 

differentiated 3T3-L1 cells. 3T3-L1 mouse pre-adipocytes (1×105 cells in 35 19 

mm dish) were induced to adipocyte differentiation with a mixture of 20 

methylisobutylxanthine (0.5 mM), dexamethasone (1 µM), and insulin (10 21 

µg/ml) in DMEM containing 10% FBS for 48 hours. Differentiated 3T3-L1 cells 22 

were treated with DMSO alone, quercetin, nobiletin, or rapamycin for 12 days. 23 

The cells were washed twice with PBS and analyzed using western blotting and 24 
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RT-PCR methods. Rap, rapamycin. 1 



Table 1. List of primer sequences for RT-PCR 

 
 
 
 
 
 
 

Gene Primer Sequence (5’-3’) Product size (bp) Cycles 

Denaturation 

Annealing  (ºC, sec) 

Extention       

Leptin 
Forward 
Reverse 

CCA AAA CCC TCA TCA AGA CC 
GTC CAA CTG TTG AAG AAT GTC CC 

395 37 
95, 45 
57, 45 
72, 45 

C/EBP α 
Forward 
Reverse 

AGG TGC TGG AGT TGA CCA GT 
CAG CCT AGA GAT CCA GCG AC 

 
238 

 
25 

94, 60 
54, 60 
72, 30 

PPAR γ 
Forward 
Reverse 

GGT GAA ACT CTG GGA GAT TC 
CAA CCA TTG GGT CAG CTC TT 

 
268 

 
30 

94, 40 
58, 40 
72, 50 

Cyclophilin 
Forward 
Reverse 

TTG GGT CGC GTC TCG TTC GA 
GCC AGG ACC TGT ATG CTT CA 

240 20 
95, 30 
50, 30 
72, 60 



Table 2. General observations in male db/db mice 

Group 

No. 
Treatment 

Body weight 

(g) 

Epididymal fat 

weight (g) 

Pancreatic weights 

(g/100g body weight) 
Length of large bowel 

(cm) 

Food intake 

(g/day) 

1 AOM 48.6 ± 3.3 2.42 ± 0.22 0.530 ± 0.078 11.8 ± 0.4 6.30 ± 1.66 

2 
AOM+ 

100 ppm CHR 
47.7 ± 5.3 2.31 ± 0.28 0.661 ± 0.127 11.9 ± 0.4 5.70 ± 1.88 

3 
AOM+ 

100 ppm QER 
48.8 ± 2.1 2.45 ± 0.31 0.666 ± 0.083a 12.1 ± 0.3 6.26 ± 1.77 

4 
AOM+ 

100 ppm NOB 
53.3 ± 3.3 2.47 ± 0.40  0.555 ± 0.013 12.1 ± 0.4 5.83 ± 1.92 

5 100 ppm CHR 43.3 ± 9.2 2.42 ± 0.35 0.802 ± 0.205a 11.6 ± 0.7 6.86 ± 2.03 

6 100 ppm QER 47.9 ± 7.2 2.63 ± 0.35 0.750 ± 0.209 11.6 ± 0.4 6.93 ± 2.39 

7 100 ppm NOB 46.9 ± 8.0 2.38 ± 0.36 0.740 ± 0.057a 11.9 ± 0.5 6.59 ± 1.94 

8 None 48.7 ± 9.5 2.35 ± 0.46 0.686 ± 0.162 11.5 ± 1.0 6.48 ± 2.07 

Data are shown as the mean ± SD. 
a Significantly different in Student’s t-test, P < 0.05 vs group 1.  



Table 3. Inhibitory effects of flavonoids on AOM-induced preneoplastic lesion formation and PCNA-index 

Data are shown as the mean ± SD. 
a Significantly different in one-way ANOVA with Bonferroni correction test, P < 0.001 vs group 1.  
b Significantly different in one-way ANOVA with Bonferroni correction test, P < 0.05 vs group 1.  
c Significantly different in one-way ANOVA with Bonferroni correction test, P < 0.01 vs group 1.  
 

Group 

No. 
Treatment Total no. of ACF/colon 

Total no. of ACF containing  

4 or more ACs/colon 

Total no. of 

BCAC/cm2 

PCNA-labeling index (%) 

ACF BCAC 

1 AOM 25.6 ± 8.9 4.6 ± 2.4 12.5 ± 9.7 39.1 ± 5.2 48.8 ± 6.0 

2 
AOM+ 

100 ppm CHR 
2.3 ± 2.2a 0.1 ± 0.3a  4.4 ± 3.1b 30.5 ± 6.2b 35.9 ± 6.3c 

3 
AOM+ 

100 ppm QER 
2.8 ± 2.0a 0  3.6 ± 2.6c 27.5 ± 6.3a 28.7 ± 9.2a 

4 
AOM+ 

100 ppm NOB 
8.3 ± 4.9a 0.7 ± 1.3a  4.5 ± 3.2b 31.4 ± 6.2b 39.5 ± 6.9b 

5 100 ppm CHR 0 0 0 0 0 

6 100 ppm QER 0 0 0 0 0 

7 100 ppm NOB 0 0 0 0 0 

8 None 0 0 0 0 0 



Table 4. Serum profiles in each groups of male db/db mice 

Data are shown as the mean ± SD. 
a Significantly different in Student’s t-test, P < 0.05 vs group 8. 
b Significantly different in Student’s t-test, P < 0.05 vs group 1.  

Group 

No. 
Treatment 

Leptin 

(ng/ml) 

Adiponectin 

(µg/ml) 

IGF-1 

(ng/ml) 

Insulin 

(ng/ml) 

Triglyceride 

(mg/dl) 

Cholesterol 

(mg/dl) 

Glucose 

(mg/dl) 

1 AOM 181.4 ± 15.6a 8.0 ± 0.3a 467.5 ± 93.3 4.2 ± 2.6 204.0 ± 27.9 176.4 ± 13.0 791.6 ± 101.4 

2 
AOM+ 

100 ppm CHR 
160.9 ± 39.5 8.1 ± 0.2 397.3 ± 61.8 4.6 ± 1.9 183.1 ± 37.2 169.5 ± 13.8 843.9 ± 78.4 

3 
AOM+ 

100 ppm QER 
125.4 ± 19.3b 7.8 ± 0.7 434.2 ± 53.2 2.8 ± 0.8 227.4 ± 44.2 175.8 ± 21.2 882.0 ± 20.6 

4 
AOM+ 

100 ppm NOB 
179.2 ± 44.3 8.5 ± 0.8 412.2 ± 49.8 5.4 ± 2.2 248.8 ± 66.7 187.0 ± 21.0 817.4 ± 59.4 

5 100 ppm CHR 102.3 ± 51.0 7.0 ± 0.8 538.2 ± 175.8 1.5 ± 1.0 277.3 ± 94.7 151.9 ± 36.2 1013.4 ± 79.0 

6 100 ppm QER 100.8 ± 44.9 6.5 ± 0.3 495.8 ± 95.4 2.0 ± 1.3 250.4 ± 61.8 171.5 ± 28.3 966.8 ± 94.0 

7 100 ppm NOB 102.6 ± 35.9 6.9 ± 0.7 528.1 ± 114.0 2.7 ± 2.9 243.7 ± 17.5 168.0 ± 28.8 886.7 ± 102.5 

8 None 108.8 ± 36.8    6.4 ± 0.3 473.0 ± 35.7 2.8 ± 1.7 275.0 ± 15.9 179.0 ± 24.8 1068.2 ± 27.2 
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