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Abstract. We develop a nonlinear wave growth theory of magnetospheric17

chorus emissions, taking into account the spatial inhomogeneity of the static18

magnetic field and the plasma density variation along the magnetic field line.19

We derive theoretical expressions for the nonlinear growth rate and the am-20

plitude threshold for the generation of self-sustaining chorus emissions. We21

assume that nonlinear growth of a whistler-mode wave is initiated at the mag-22

netic equator where the linear growth rate maximizes. Self-sustaining emis-23

sions become possible when the wave propagates away from the equator dur-24

ing which process the increasing gradients of the static magnetic field and25

electron density provide the conditions for nonlinear growth. The amplitude26

threshold is tested against both observational data and self-consistent par-27

ticle simulations of the chorus emissions. The self-sustaining mechanism can28

result in a rising tone emission covering the frequency range of 0.1 - 0.7 Ωe029

where Ωe0 is the equatorial electron gyrofrequency. During propagation higher30

frequencies are subject to stronger dispersion effects that can destroy the self-31
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sustaining mechanism. We obtain a pair of coupled differential equations for32

the wave amplitude and frequency. Solving the equations numerically, we re-33

produce a rising tone of VLF whistler-mode emissions that is continuous in34

frequency. Chorus emissions, however, characteristically occur in two distinct35

frequency ranges, a lower band and an upper band, separated at half the elec-36

tron gyrofrequency. We explain the gap by means of the nonlinear damping37

of the longitudinal component of a slightly oblique whistler-mode wave packet38

propagating along the inhomogeneous static magnetic field.39



1. Introduction

Coherent electromagnetic waves called chorus emissions have been frequently observed40

in the inner magnetosphere [e.g., Tsurutani and Smith, 1974; Anderson and Kurth, 1989;41

Lauben et al., 1998, 2002; Santolik et al., 2003; Santolik, 2008; Kasashara et al., 2009].42

Chorus emissions typically consist of a series of rising tones near the magnetic equator,43

excited by energetic electrons from several keV to tens of keV injected into the inner44

magnetosphere at the time of a geomagnetic disturbance. In recent years chorus emissions45

have been studied extensively because of their role as a viable mechanism for accelerating46

radiation belt electrons [Summers et al., 1998, 2002, 2004a,b, 2007a,b; Roth et al., 1999;47

Summers and Ma, 2000; Albert, 2000, 2002; Miyoshi et al., 2003; Horne et al., 2005;48

Omura et al., 2007; Katoh and Omura, 2004, 2007a; Summers and Omura, 2007; Furuya49

et al., 2008; Katoh et al., 2008]50

Numerical modeling of chorus emissions have been performed using a Vlasov-hybrid51

simulation based on simplified field equations derived from Maxwell’s equations under52

the assumption of a coherent whistler-mode wave [Nunn, 1974; Nunn et al., 1997]. The53

initial wave amplitude and the wave phase are specified in such simulations. In contrast54

to the Vlasov-hybrid simulation, chorus emissions with rising tones were reproduced suc-55

cessfully in an electron-hybrid electromagnetic code starting from thermal noise. Here,56

Maxwell’s equations are solved directly together with the electron fluid equation for the57

cold dense electrons and the equations of motion for the hot resonant electrons [Katoh and58

Omura, 2006; 2007b]. The mechanism of the rising chorus emissions has been analyzed59

theoretically in terms of nonlinear wave growth due to the formation of an electromag-60



netic electron hole in velocity phase space [Omura et al., 2008]. The relation between the61

wave amplitude and the frequency sweep rate in the generation region of chorus emissions62

has been derived [Omura et al., 2008, Equation (50)]. The validity of this relation has63

been demonstrated in a full-particle electromagnetic simulation [Hikishima et al., 2009] as64

well as in the electron-hybrid simulation [Katoh and Omura, 2007b]. These simulations65

show that seeds of chorus emissions with rising tones are formed in a localized region66

near the magnetic equator. The seeds of emissions grow as a result of the formation of a67

resonant current arising from nonlinear trajectories of resonant untrapped electrons. The68

generation mechanism [Omura et al., 2008] is clearly different from those proposed in the69

previous studies [Nunn et al., 1997; Trakhtengerts et al., 1995; 1999] which assume that70

the frequency variation of chorus emissions is driven by an out-of-phase resonant current.71

We first derive the nonlinear wave growth rate in section 2 based on nonlinear trajecto-72

ries of resonant electrons interacting with a whistler-mode wave with a variable frequency.73

This is an extension of the theoretical analysis of an electromagnetic electron hole by74

Omura et al. [2008]. The key element in the derivation of the nonlinear growth rate is75

the frequency sweep rate of the growing chorus element near the equator. In section 3,76

we study the dispersion effect that modifies the frequency sweep rate during propagation77

due to the frequency dependence of the group velocity. The nonlinear growth is sustained78

over a relatively long distance of propagation by the inhomogeneity of the dipole magnetic79

field. In section 4 we obtain an amplitude threshold from the condition of the absolute80

instability at the magnetic equator. When the wave amplitude exceeds the threshold the81

wave amplitude grows along with the increasing frequency. In section 5 we derive a pair82

of coupled differential equations for the wave amplitude and the frequency which we call83



“chorus equations”. These equations reproduce the characteristic features of a rising cho-84

rus element. We solve them numerically with parameters used in the recent simulations85

by Katoh and Omura [2007b] and Hikishima et al. [2009]. We find excellent agreement86

between the simulations and the solutions of the chorus equations. Most of the rising87

tone emissions starting from a frequency lower than half the gyrofrequency terminate just88

below half the gyrofrequency. This obviously suggests a possible damping mechanism of89

rising tone emissions occurring at half the gyrofrequency. Herein we propose a new mech-90

anism to explain whistler-mode wave damping at half the gyrofrequency which we present91

in section 6. In section 7, we solve the chorus equations using two sets of parameters,92

namely for the Earth’s magnetosphere [Santolik et al., 2003] and Saturn’s magnetosphere93

[Hospodarsky et al., 2008]. We find that the duration times of chorus emissions are much94

different for Earth and Saturn. In section 8 we present the summary and discussion.95

2. Nonlinear growth rate

We assume a coherent electromagnetic wave propagating parallel to a static magnetic96

field B0 directed along the h-axis, and h is the distance along the magnetic field line97

from the magnetic equator. The wave fields are in the transverse plane containing x- and98

y-axes. We express the electric and magnetic field vectors of the wave in the transverse99

plane by the complex forms Ẽw = Ew exp (iψE) and B̃w = Bw exp (iψB), respectively.100

From Maxwell’s equations we obtain the following equation for the amplitude Bw of the101

wave magnetic field in the form [Omura et al., 2008],102

∂Bw

∂t
+ Vg

∂Bw

∂h
= −μ0Vg

2
JE , (1)103

104



where μ0 and JE are the vacuum permeability and the component of the resonant current105

parallel to the wave electric field, respectively. Under the assumption that the growth106

rate ωi is much smaller than the wave frequency ω, i.e., ωi << ω, the resonant current107

parallel to the wave magnetic field JB is neglected. This ensures that the frequency ω is108

constant in the frame of reference moving with the group velocity Vg as expressed by the109

equation,110

∂ω

∂t
+ Vg

∂ω

∂h
= 0 . (2)111

112

The frequency ω and wave number k satisfy the cold plasma dispersion relation for the113

whistler-mode wave which we write as114

δ2 =
1

1 + ξ2
, (3)115

116

where δ and ξ are dimensionless parameters defined by117

δ2 = 1 − ω2

c2k2
(4)118

119

and120

ξ2 =
ω(Ωe − ω)

ω2
pe

. (5)121

122

These parameters are determined by the speed of light c, electron plasma frequency ωpe,123

and electron gyrofrequency Ωe as shown above.124

Using these parameters, we express the phase velocity and group velocity of the whistler-125

mode wave as [Omura et al., 2008]126

Vp =
ω

k
= cδξ (6)127

128

and129

Vg =
cξ

δ

[
ξ2 +

Ωe

2(Ωe − ω)

]−1

. (7)130

131



The electron resonance velocity for an electron with a speed v is then132

VR = cδξ

(
1 − Ωe

γω

)
, (8)133

134

where γ is the Lorentz factor given by γ = [1−(v/c)2]−1/2. Using the relativistic equations135

of motion for a resonant electron interacting with a whistler-mode wave [Omura et al.,136

2008], we obtain the second-order nonlinear ordinary differential equation for the phase137

angle ζ,138

d2ζ

dt2
=
ω2

t δ
2

γ
(sin ζ + S) , (9)139

140

where ωt is the trapping frequency given by ωt =
√
kV⊥0Ωw [Matsumoto and Omura, 1981;141

Omura and Matsumoto, 1982]. The parameters V⊥0 and Ωw are the average perpendicular142

velocity and the normalized wave amplitude defined by Ωw = eBw/m0, where −e and m0143

are the charge and rest mass of an electron. The parameter S is the inhomogeneity ratio144

given by145

S = − 1

s0ωΩw
(s1

∂ω

∂t
+ cs2

∂Ωe

∂h
) , (10)146

147

where148

s0 =
δ

ξ

V⊥0

c
, (11)149

150

151

s1 = γ(1 − VR

Vg

)2 , (12)152

153

and154

s2 =
1

2ξδ

{
γω

Ωe

(
V⊥0

c

)2

−
[
2 + Λ

δ2(Ωe − γω)

Ωe − ω

]
VRVp

c2

}
, (13)155

156

and we have introduced the parameter Λ. We have incorporated the variation of the cold157

electron density Ne(h) along the magnetic field line as Ne(h) = Ne0Ωe(h)/Ωe0, where Ne0158



and Ωe0 are respectively the cold electron density and the electron gyrofrequency at the159

equator. We find that Λ = ω/Ωe for this inhomogeneous electron density model (see160

Appendix A), while Λ = 1 for the constant electron density model as assumed by Omura161

et al. [2008]. In the slow-wave approximation, we set δ = 1 and γ = 1 in (9) - (13) and162

so obtain simplified equations for the resonant particles [Omura et al., 1991].163

From the analysis of trajectories of resonant electrons as described by (9), it is found164

that the maximum value of JE is realized when S = −0.4 [Omura et al., 2008]. The165

magnitude of JE is calculated by assuming a distribution function in the velocity phase166

space in the presence of a coherent whistler-mode wave as167

g(v‖, ζ) = g0(v‖) −Qgt(v‖, ζ) , (14)168
169

and we have170

JE = −eQV 2
⊥0

∫ 2π

0

∫ ∞

−∞
gt(v‖, ζ) sin ζdv‖dζ , (15)171

172

where we have assumed a Dirac delta function Δ(v⊥−V⊥0) for the perpendicular velocity173

v⊥. The functions g0(v‖) and gt(v‖, ζ) are the unperturbed velocity distribution function174

and the part of g0 that corresponds to trapping by the wave. Since the separatrix of the175

trapping wave potential is closed, the entrapping of new particles does not take place176

unless the wave amplitude increases. At this stage there arises an electron hole in the177

velocity phase space [Omura and Summers, 2006]. We assume that the factor Q represents178

the depth of the electron hole. If Q = 1 the electron hole is completely void. If 50 %179

of trapped electrons are lost from the trapping wave potential, then Q = 0.5. Assuming180

that gt(v‖, ζ) = G ( = constant) inside the trapping region and gt(v‖, ζ) = 0 outside it,181



we rewrite (15) as182

JE = −J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]
1/2 sin ζdζ , (16)183

184

where J0 = (2e)3/2(m0kγ)
−1/2V

5/2
⊥0 δQGBw

1/2, and e and m0 are the charge and rest mass185

of an electron. The phase angles ζ1 and ζ2 define the boundary of the trapping wave186

potential as described by Omura et al. [2008]. The current −JE is a function of S and187

maximizes at S = - 0.4. The maximum value is given by −JE/J0 = 0.975 ∼ 1. We thus188

have189

JE,max = −(2e)3/2(m0kγ)
−1/2V

5/2
⊥0 B

1/2
w QGδ . (17)190

191

Writing the right-hand side of (1) as dBw/dt, we obtain192

dBw

dt
=
μ0Vg

2
(2e)3/2

(
cξδ

m0ωγ

)1/2

V
5/2
⊥0 B

1/2
w QGδ , (18)193

194

where we have eliminated the wave number k using (6). We assume that the velocity195

distribution function f of hot energetic electrons is given in terms of the relativistic196

momentum per unit mass u = γv; u has components u‖ = γv‖ and u⊥ = γv⊥, respectively197

parallel and perpendicular to the ambient magnetic field. We specify f as198

f(u‖, u⊥) =
Nh

(2π)3/2Ut‖U⊥0

exp

(
− u2

‖
2U 2

t‖

)
Δ(u⊥ − U⊥0) , (19)199

200

where U⊥0 = γV⊥0, and Δ is the Dirac delta function, and we have normalized f to201

the density of hot electrons Nh. Integrating over u⊥ and taking an average over ζ, we202

obtain the magnitude G of the unperturbed distribution function g(v‖, ζ) at the resonance203

velocity VR as204

G =
Nh

(2π)3/2Ut‖U⊥0

exp

(
−γ

2V 2
R

2U 2
t‖

)
. (20)205

206



Combining (18) and (20), we obtain the result,207

dBw

dt
= ΓNBw , (21)208

209

where we define210

ΓN =
Qω2

ph

2

(
ξ

Ωwω

)1/2
Vg

Ut‖

(
V⊥0δ

cπγ

)3/2

exp

(
−γ

2V 2
R

2U 2
t‖

)
(22)211

212

as the nonlinear growth rate. The parameter ωph is the plasma frequency of hot electrons213

given by ω2
ph = Nhe

2/(ε0m0), where ε0 is the vacuum permittivity. It should be noted214

that we have defined ΓN as the nonlinear wave growth rate by analogy with the linear215

growth rate. In Figure 1, we plot ΓN for the indicated set of parameters and the plasma216

frequencies ωpe = 2, 4, 8, 16 Ωe0. The nonlinear growth rate maximizes in the lower band217

0 < ω/Ωe0 < 0.5 for plasma frequencies ωpe/Ωe0 ≥ 3, and maximizes in the upper band218

0.5 < ω/Ωe0 < 1.0 when ωpe/Ωe0 ≤ 2.219

3. Spatial variation of the frequency sweep rate

As we have seen in the previous section, the nonlinear growth of a chorus element near220

the equator is controlled by the frequency sweep rate or the time derivative of the frequency221

∂ω/∂t. We consider here how the frequency sweep rate evolves in space during the wave222

propagation. We assume that a chorus element is excited at the equator (h = 0). The223

propagation of the wave frequency is described by equation (2). We consider the motion224

of two segments of a chorus element with frequencies ω1 and ω2 (with ω1 < ω2) and group225

velocities Vg1 and Vg2, respectively, schematically illustrated in Figure 2. We assume that226

the segments with frequencies ω1 and ω2 are generated at the equator at times t = 0 and227



Δt respectively, and we have228

ω2 = ω1 +

(
∂ω

∂t

)
t=0

Δt . (23)229

230

Taking the group velocity as constant in space, we find that after the chorus element231

propagates for a period of T the segment with frequency ω1 reaches the location h1 =232

Vg1(Δt+ T ), while the segment with frequency ω2 reaches h2 = Vg2T .233

Since the group velocity is a function of ω, we have234

Vg2 = Vg1 +

(
∂Vg

∂ω

∂ω

∂t

)
t=0

Δt . (24)235

236

We calculate the spatial gradient of the frequency at t = T as237

(
∂ω

∂h

)
t=T

= lim
Δt→0

ω1 − ω2

h1 − h2
=

−(∂ω/∂t)t=0

Vg1 − T (∂Vg/∂ω)(∂ω/∂t)t=0
. (25)238

239

Using equation (2), and assuming that the chorus element generated at t = 0 and h = 0240

propagates a distance hT over the period T , i.e., hT = VgT , we obtain the relation,241

(
∂ω

∂t

)
h=hT

=

[
1 − hT

V 2
g

∂Vg

∂ω

(
∂ω

∂t

)
h=0

]−1(
∂ω

∂t

)
h=0

. (26)242

243

Using equation (7) for Vg, we calculate its derivative in Appendix B as244

∂Vg

∂ω
=

V 2
g δ

3

4cξω(Ωe − ω)2

[
Ωe − 2ω(1 − 1

δ
)

] [
Ωe − 2ω(1 +

1

δ
)

]
. (27)245

246

It follows from equation (27) that the frequency at which Vg maximizes is247

ω =
Ωe

2(1 + 1/δ)
. (28)248

249

For ωpe � Ωe, δ ∼ 1, and thus Vg maximizes at ω ∼ 0.25Ωe, as shown in Figure 3(a).250

Substituting (27) into (26), we obtain251

(
∂ω

∂t

)
h=hT

= D

(
∂ω

∂t

)
h=0

, (29)252

253



where D is the frequency sweep rate factor,254

D =

[
1 − δ3(Ω2

e − 4ωΩe − 4ξ2ω2)

4cξω(Ωe − ω)2
hT

(
∂ω

∂t

)
h=0

]−1

. (30)255

256

We plot D for the cases hT (∂ω/∂t)h=0 = 0.0001, 0.001, 0.01, 0.05 cΩe0 in Figure 3(b). We257

see that the frequency sweep rate factor D can remain nearly constant over the frequency258

range 0.1 ∼ 0.7 Ωe0 in spite of the variation of the group velocity and the phase velocity259

with respect to frequency ω so long as hT (∂ω/∂t)h=0 ≤ 0.001 cΩe0.260

4. Threshold for self-sustaining emissions

We derive a necessary condition for a chorus element to be amplified during propagation261

from the equator to a higher latitude region. Expressing the derivative dBw/dt in (21) in262

terms of temporal and spatial derivatives and normalizing the wave amplitude, we obtain263

∂Ωw

∂t
+ Vg

∂Ωw

∂h
= ΓNΩw . (31)264

265

For chorus emissions to grow at the equator, the temporal growth rate should be positive,266

namely, ∂Ωw/∂t > 0. From (31) we therefore obtain267

∂Ωw

∂h
<

ΓN

Vg
Ωw , (32)268

269

where we have assumed that the chorus waves propagate in the positive direction, i.e.,270

Vg > 0.271

We have found that chorus elements with a rising tone are generated at the equator [Ka-272

toh and Omura, 2007b; Omura et al., 2008]. The linear growth rate of the whistler mode273

instability maximizes at the equator because the absolute value of the resonance velocity274

takes the lowest value there. The flux of the resonant electrons therefore maximizes at the275

equator. Thus, the wave amplitude grows fastest and reaches the threshold value for the276



nonlinear wave growth at the equator. Our theory and simulations are validated by the277

fact that the source location of chorus elements is indeed confirmed by recent spacecraft278

observations to be close to the magnetic equator [e.g., Santolik et al., 2003].279

At the equator the inhomogeneity of the magnetic field is zero, and the second term on280

the right-hand side of（10) vanishes. Since the maximum nonlinear wave growth takes281

place when S = −0.4 [Omura et al., 2008], we can derive from (10) the relation between the282

frequency sweep rate and the normalized wave amplitude at the equator Ωw0 = eBw0/m0283

in the form,284

∂ω

∂t
=

0.4s0ω

s1
Ωw0 , (33)285

286

where the wave amplitude Bw0 is compared with the static magnetic field intensity B0287

at the equator by Bw0/B0 = Ωw0/Ωe0. Equation (2) implies that the frequency does not288

change in the frame of reference moving with the group velocity Vg. As we have seen in289

the previous section, the frequency sweep rate ∂ω/∂t can be assumed constant for the290

frequency range ω = 0.1 ∼ 0.7 Ωe0 as the wave packet propagates along the magnetic field291

line.292

Near the magnetic equator, we assume a parabolic variation along the magnetic field293

line, which is specified by the L value and the Earth’s radius RE, as expressed by Ωe =294

Ωe0(1 + ah2) with a = 4.5/(LRE)2. Noting that ∂Ωe/∂h = 2aΩe0h, we consider the295

distance hc at which the first and second terms of the right-hand side of equation (10)296

become equal. Equating the two terms and using (33), we obtain the critical distance hc297

as298

hc =
s0ωΩw0

5cas2Ωe0
. (34)299

300



The distance hc is used in identifying the dominant terms of the inhomogeneity ratio S301

in the following.302

As the chorus emission propagates further from the equator to the distance h (� hc),303

the second term of the inhomogeneity ratio (10) becomes much greater than the first term.304

For the chorus element to maintain maximum growth at this distance, a negative resonant305

current JE must be formed with S = −0.4. Neglecting the first term on the right-hand306

side of (10) and setting S = −0.4, we obtain307

Ωw =
cs2

0.4s0ω

∂Ωe

∂h
. (35)308

309

Taking the spatial derivative of (35), we obtain310

∂Ωw

∂h
=

cs2

0.4s0ω

∂2Ωe

∂h2
=

5cas2Ωe0

s0ω
. (36)311

312

Self-sustaining nonlinear wave growth during propagation near the equator, where the313

dipole magnetic field is approximated by the parabolic function, requires that the spatial314

gradient of the wave amplitude ∂Ωw/∂h is a constant as shown in (36), It should be noted315

that the spatial gradient of the wave amplitude does not depend on the wave amplitude316

itself. When the optimum self-sustaining wave growth is realized as the initial generation317

process of a chorus element, the gradient of the wave amplitude should be close to the318

value given by (36).319

Inserting (36) into (32), we obtain the inequality,320

Ωw0 >
5cas2Ωe0Vg

s0ωΓN

. (37)321

322



Using the normalized parameters, Ṽ⊥0 = V⊥0/c, ω̃ = ω/Ωe0, ã = ac2/Ω2
e0, Ũt‖ = Ut‖/c,323

ω̃ph = ωph/Ωe0, and Ω̃w0 = Ωw0/Ωe0, we rewrite (37) as324

Ω̃w0 =
Bw0

B0

> Ω̃th , (38)325

326

where327

Ω̃th =
100π3γ3ξ

ω̃ω̃4
phṼ

5
⊥0δ

5

(
ãs2Ũt‖
Q

)2

exp

(
γ2Ṽ 2

R

Ũ 2
t‖

)
. (39)328

329

It is clear from (35) that the self-sustaining mechanism only works for h > 0 with the330

positive gradient of the magnetic field. That is, nonlinear wave growth takes place only331

when the wave propagates away from the equator with an amplitude satisfying (38). In332

Figure 4 we plot the amplitude threshold for typical parameters at the Earth (L = 4.4)333

and for the electron plasma frequencies ω̃pe = 2, 3, 5, 8. The wave amplitude threshold334

is higher for a lower wave frequency ω̃ and for a smaller plasma frequency ω̃pe. Since335

the linear wave growth rate usually maximizes in the lower frequency range [e.g., Omura336

and Summers, 2004], the amplitude threshold becomes especially important for smaller337

plasma frequencies.338

5. Rising tone emission

In the formulation of the mechanism of nonlinear wave growth described above we have339

not assumed any specific value for the temperature anisotropy. Since the resonant current340

induced by an electromagnetic electron hole is proportional to the average perpendicular341

velocity V⊥0, higher values of V⊥0 imply a higher nonlinear growth rate (see equation (22)).342

An additional important parameter that controls the nonlinear growth rate is the wave343

amplitude Ωw. If the wave amplitude is sufficiently large to cause the nonlinear trapping344

of resonant electrons, then nonlinear wave growth takes place even for low values of V⊥0.345



Therefore, nonlinear wave growth is not related to linear wave growth. Nonlinear and346

linear wave growth do not coexist because the gradient of the unperturbed distribution347

function as assumed in the linear theory is entirely modified by the formation of the348

electron hole. If a wave of sufficiently large amplitude is injected into a linearly stable349

plasma state in the inner magnetosphere where high energy electrons are trapped, then350

the wave can trigger a self-sustaining emission if the amplitude exceeds the threshold351

given by (39).352

Nonlinear wave growth is due to the formation of a resonant current as described by the353

second-order resonance condition; linear wave growth is due to particle diffusion at the354

resonance velocity determined by the first-order resonance condition. In the linear growth355

phase starting from incoherent thermal noise, there arises a coherency at a frequency356

corresponding to the maximum linear growth rate. Once the amplitude of a coherent357

wave exceeds the threshold value for self-sustaining emissions, nonlinear wave growth sets358

in, driven by the second-order phase variation ∂ω/∂t corresponding to the maximum value359

of the resonant current JE.360

We evaluate the temporal variation of the wave amplitude by assuming that the spatial361

derivative of the wave amplitude in (31) takes the threshold value for self-sustaining wave362

growth given by (36). Assuming the minimum spatial gradient of the growing wave363

amplitude in (36), and inserting this into (31), we derive the equation,364

∂Ω̃w0

∂t̃
= Ṽg

⎡
⎣Qω̃2

ph

2Ũt‖

(
Ṽ⊥0δ

πγ

)3/2(
ξΩ̃w0

ω̃

)1/2

exp

(
−γ

2Ṽ 2
R

2Ũ 2
t‖

)
− 5s2ã

s0ω̃

⎤
⎦ . (40)365

366

We now rewrite (33) in the form,367

∂ω̃

∂t̃
=

2s0

5s1
ω̃Ω̃w0 . (41)368

369



The temporal evolution of a chorus element at the equator is determined by the pair of370

coupled differential equations (40) and (41) for the frequency range of 0.1 ∼ 0.7 Ωe0. In371

this frequency range the variation of the frequency sweep rate is not significant. At higher372

frequencies the mechanism of the nonlinear growth breaks down because of the substantial373

mitigation of the frequency sweep rate through propagation.374

Recently two different types of simulations have demonstrated that energetic electrons375

with a temperature anisotropy can produce rising chorus emissions near the magnetic376

equator. Examples of these simulations are Figure. In Figure 5(a) we show an electron-377

hybrid simulation in which the dense cold electrons are treated as a fluid while the resonant378

electrons are treated as super particles [Katoh and Omura, 2006, 2007b]. In Figure 5(b) we379

show a full-particle simulation in which the energetic and cold components of electrons are380

treated as particles [Hikishima et al., 2009]. In both simulations, we find the frequency381

sweep rates of rising chorus elements are proportional to the wave amplitudes at the382

equator Ωw0, as predicted by (33). In these simulations, we confirm that there exists383

a threshold value for the wave amplitude to grow due to the nonlinear wave growth384

mechanism, i.e., due to the formation of an electromagnetic electron hole in the velocity385

phase space.386

We calculate the threshold amplitude Ω̃th for the parameters assumed in these simula-387

tions from (39). Katoh and Omura [2007b] (Simulation A) assumed that ã = 9.8 × 10−7,388

Ṽ⊥0 = 0.7, Ũt‖ = 0.35, ω̃pe = 4, and ω̃ph = 0.11. Taking Q = 0.5, we then have389

Ω̃th = 2.8 × 10−4 for ω̃ = 0.2. In Simulation A the wave amplitude that induces the390

nonlinear growth is Ω̃w0 ∼ 4 × 10−4.391



Hikishima et al. [2009] (Simulation B) assumed that ã = 5.1 × 10−6, Ṽ⊥0 = 0.29,392

Ũt‖ = 0.2, ω̃pe = 5, and ω̃ph = 0.40. Setting Q = 0.5, we have Ω̃th = 4 × 10−4 for ω̃ = 0.2,393

while in the simulation the wave amplitude at the onset of the rising chorus element at394

the equator is about Ω̃w0 = 7 × 10−4. Therefore, we confirm that our theoretical analysis395

of the threshold for nonlinear wave growth yields approximate values for the initial wave396

amplitudes of the chorus emissions near the equator.397

We solve equations (40) and (41) numerically starting from the values near the threshold398

amplitudes at ω̃ = 0.2. Figure 6(a) shows the calculation for Simulation A for two399

solutions with slightly different initial wave amplitudes. One solution starting with Ω̃w0 =400

2.5 × 10−4 drawn as a solid curve shows a rising chorus element, while the other starting401

with Ω̃w0 = 2.0 × 10−4 drawn as a dashed curve just damps out. The duration time of402

the chorus emission is about 4000 Ω−1
e0 which agrees with the duration time of the first403

few chorus elements in Figure 6(a). The calculations for Simulation B are similar to those404

for Simulation A and result in similar solutions, but the duration time of the emissions is405

shorter, see Figure 6(b). One solution starting with Ω̃w0 = 8× 10−4 shows a rising chorus406

element, while the other in dashed curve with Ω̃w0 = 7 × 10−4 is a diminishing element.407

We have assumed Q = 0.5 for these calculations, but this is a parameter which we cannot408

determine exactly. We have varied the value of Q which changes the threshold as given409

by (39), but the duration time of the chorus element does not change appreciably. The410

duration time is about 2500 Ω−1
e0 , which is also in agreement with the chorus elements411

that appear in the initial phase of Simulation B, as shown in Figure 5(b).412

In both simulations, we find that the nonlinear wave growth gives rising tone emissions413

starting from frequencies 0.1 ∼ 0.2 Ωe0 and reaching frequencies 0.6 ∼ 0.7 Ωe0, as shown in414



Figure 6. In Simulation A, we find the emissions cover the frequency range 0.2 ∼ 0.7 Ωe0415

(see Figure 6 of Hikishima et al. [2009]), while the linear growth rate is positive in416

the range 0.1 ∼ 0.5 Ωe0 (Figure 2 of Hikishima et al. [2009]). We emphasize that the417

mechanism of nonlinear wave growth of chorus emissions is different from that of linear418

wave growth. The limitation of nonlinear wave growth comes from the breaking down of419

the self-sustaining mechanism in wave propagation from the equator. Since the frequency420

sweep rate is the key element of nonlinear wave growth, mitigation of the frequency sweep421

rate through propagation causes saturation of the nonlinear growth process. Assuming422

hT = hc in (30), we calculate the quantity hc∂ω/∂t which controls the mitigation factor423

D for the frequency sweep rate. For Simulation A we find hc = 150 cΩ−1
e0 and ∂ω/∂t =424

6.7×10−5 Ω2
e0, and hence hc(∂ω/∂t) = 0.01 cΩe0. On the other hand, for Simulation B we425

find hc = 320 cΩ−1
e0 for Ωw0 = 3× 10−3Ωe0 and ω = 0.35Ωe0. Since the maximum distance426

from the equator in Simulation B is only 150 cΩ−1
e0 , the simulation box is not large enough427

to realize nonlinear wave growth driven by the spatial inhomogeneity. The wave amplitude428

and frequency imply from (29) that the frequency sweep rate is ∂ω/∂t = 2.4 × 10−4 Ω2
e0.429

Starting from the low frequency ω̃ = 0.2, the chorus elements are formed covering a430

frequency range reaching beyond 0.5 Ωe0, as was also found in the chorus simulation431

by Hikishima et al. [2009]. Most of the rising tone chorus emissions observed in the432

magnetosphere are, however, terminated near 0.5 Ωe0 [e.g., Santolik et al., 2004]. We433

propose that chorus damping near 0.5 Ωe0 is due to another nonlinear effect which we434

describe in the next section.435



6. Nonlinear damping at half the gyrofrequency

Chorus emissions with a rising tone are generated near the magnetic equator. As they436

propagate away from the equator, they are amplified by the nonlinear growth mechanism.437

The wave packet propagates with the group velocity Vg given by (7), while its phase varies438

with the phase velocity given by (6). By inserting ω = 0.5Ωe into (7), we find Vg = Vp. In439

the frame of reference moving with the group velocity Vg the phase of the wave becomes440

stationary. In this frame of reference, the frequency ω is constant as expressed by (2).441

The amplitude of the wave is a slowly varying function modified by the resonant current442

given by (1). Taking into account the spatial inhomogeneity of the magnetic field and the443

plasma density of the inner magnetosphere, we assume the wave normal angle deviates444

gradually from the parallel direction; such gradual deviation of wave propagation from445

the parallel direction due to spatial inhomogeneities has been well demonstrated by ray446

tracing studies [e.g., Bortnik et al., 2006]. We assume quasi-parallel propagation in which447

the wave normal angle Ψ satisfies sin2Ψ � 1, while at the same time we retain the term448

involving sinΨ. Under the assumption of quasi-parallel propagation, the polarization of449

the transverse electromagnetic field remains circular (see Appendix C). Therefore, we can450

assume a constant wave amplitude Bw in the plane perpendicular to the static magnetic451

field. In addition, there appears a longitudinal wave electric field Ew‖ parallel to the static452

magnetic field B0 which we express as453

Ew‖ =
ω sin Ψ

δ2Ωe − ω
Ew . (42)454

455



The equation of motion of energetic electrons interacting with the quasi-parallel whistler-456

mode wave is given by457

d(γv‖)
dt

= −eEw‖
m0

sinφ+
ev⊥Bw

m0

sin ζ − γv2
⊥

2Ωe

∂Ωe

∂h
, (43)458

459

where φ =
∫

(ω−kv‖)dt and ζ =
∫

(Ω−ω+kv‖)dt, and the time derivative of γ is obtained460

by considering variation of electron kinetic energy K as461

dγ

dt
=

1

m0c2
dK

dt
= −eEw‖v‖

m0c2
sinφ+

eEw⊥v⊥
m0c2

sin ζ . (44)462

463

We consider energetic particles with velocities near the wave phase velocity, i.e., v‖ ∼464

ω/k. Denoting v̄‖ = v‖ − ω/k, we find that φ = − ∫ kv̄‖dt and ζ =
∫

(Ωe − kv̄‖)dt. Since465

the phase of the second term on the right-hand side of (44) changes very quickly with466

frequencies close to Ωe, we can neglect the contribution of this term to the variation of467

v‖. Solving for the time derivative of v̄‖ in (44), we obtain a pair of coupled differential468

equations of v̄‖ and φ469

dv̄‖
dt

= −eEw‖
γm0

(
1 − v2

‖
c2

)
sinφ− v2

⊥
2Ωe

∂Ωe

∂h
(45)470

471

and472

dφ

dt
= −kv̄‖ . (46)473

474

Assuming that v̄‖ ∼ 0, and calculating the second-order derivative of φ, we obtain from475

(45) and (46)476

d2φ

dt2
= ω2

t‖(sinφ+ S‖) , (47)477

478

where479

ω2
t‖ =

ekEw‖δ2

γm0

(48)480

481



and482

S‖ =
kv2

⊥
2ω2

t‖Ωe

∂Ωe

∂h
. (49)483

484

If the condition |S‖| < 1 is satisfied, the parallel electric field of the whistler-mode wave485

packet can trap some of the energetic electrons that satisfy v‖ ∼ Vp. The trapping results486

in an increase in the kinetic energy of the trapped particles by two different mechanisms.487

One is the phase mixing of the trapped particles with the negative gradient (∂g/∂v‖ < 0)488

of the velocity distribution function g(v‖, φ) (see Figure 7). The other is transport of the489

energetic electrons trapped by the potential to a higher latitude. Since the density of the490

energetic electrons decreases at higher latitude because of reflection at the mirror points,491

the electrons trapped by the parallel electric field become isolated in the phase space, thus492

forming the resonant current J‖. The center of the trapping potential (Vp, φc) is given by493

the second-order resonance condition d2φ/dt2 = 0. From (47), we obtain the condition494

sinφc + S‖ = 0. Since we assume that the chorus element propagates in the positive h495

region, i.e., moves away from the equator, we find that S‖ > 0 and sinφc < 0. Taking the496

average over the wave phase from φ = 0 to φ = 2π, we obtain497

Ew‖J‖ = − e

2π

∫ 2π

0

Ew‖

∫ ∞

−∞
v‖gt(v‖, φ) sinφ dv‖dφ > 0 , (50)498

499

where gt(v‖, φ) is the distribution function of resonant electrons trapped by the wave500

potential. Thus, trapped electrons moving with the phase velocity of the wave are accel-501

erated while they are trapped by the longitudinal wave potential. In the dipole magnetic502

field, both the phase velocity and group velocity increase as the distance from the equa-503

tor increases. The increase of the phase velocity corresponds to an increase in kinetic504



energy of the trapped electrons. This is a further interpretation of the process whereby505

the trapped electrons are accelerated.506

We consider a small box of dimension equal to one wavelength which moves with the507

group velocity. At the boundaries of this box the flux of electromagnetic energy is zero.508

Therefore, we have509

dW

dt
+ E · J = 0 , (51)510

511

where W denotes the total wave energy in the box. Separating the resonant current J512

into parallel and perpendicular components J‖ and J⊥, we write513

dW

dt
= −Ew‖J‖ − Ew⊥J⊥ . (52)514

515

When the first term on the left-hand side of (52) is dominant, the wave packet loses energy516

and undergoes the nonlinear damping.517

Since we assume quasi-parallel wave propagation, we have Ew ∼ VpBw and the parallel518

wave electric field is given by519

Ew‖ =
ω

δ2Ωe − ω
VpBw sin Ψ . (53)520

521

Substituting (48), (49), and (53) into the trapping condition S‖ < 1, we thereby expresses522

the necessary condition for effective nonlinear damping as h < hN where523

hN =
ξδ3cΩwω

γaV 2
⊥0(δ

2Ωe − ω)
sin Ψ ∼ VpΩw

γaV 2
⊥0

sin Ψ . (54)524

525

Here, we have assumed that ωpe � Ωe0, i.e., δ2 ∼ 1, and that ω ∼ 0.5 Ωe.526

In order to evaluate the contributions of the first and second terms on the right-hand side527

of (52), we compare the limiting length hN for nonlinear damping and the characteristic528



length for nonlinear growth hc. We obtain the results,529

hN

hc

=
5VpΩw sin Ψ

2V⊥0Ωw0

, (55)530

531

where we have neglected the second term in the expression (13) for s2.532

The nonlinear trajectories of trapped electrons span the parallel velocity range Vp−Vt‖ <533

v‖ < Vp + Vt‖, where Vt‖ is the trapping velocity given by Vt‖ = 2ωt‖/k [Omura et al.,534

2003]. From (48) and (53), we find535

Vt‖ = 2Vp

[
Ωwδ

2 sin Ψ

γ(δ2Ωe − ω)

]1/2

∼ 23/2Vp

[
Bw sin Ψ

γB0

]1/2

, (56)536

537

where we have assumed that δ2 ∼ 1 and ω ∼ 0.5 Ωe.538

In the course of the generation of a rising tone chorus element, waves with frequencies539

near half the gyrofrequency can also be generated near the magnetic equator during the540

process of nonlinear wave growth. Before leaving the equatorial region (h < hN ), however,541

the waves lose a substantial amount of energy to the Landau resonant electrons due to542

the deviation of the wave number vector from the parallel direction of the geomagnetic543

field. Since the magnitude of the resonant current depends on the width of the trapping544

potential (which is itself proportional to the trapping velocity), the rate of the nonlinear545

damping is proportional to
√
Bw sin Ψ. As waves grow with a rising frequency at the546

equator, wave amplitudes can be larger at higher frequencies near half the gyrofrequency.547

However, the larger amplitude waves with frequencies close to half the gyrofrequency are548

subject to stronger nonlinear damping as they propagate along the magnetic field line.549

7. Comparison with observations

Rising tone emissions are observed to be split into two different frequency bands divided550

by the electron half-gyrofrequency, as shown in Figure 8. They are usually referred to551



as lower-band and upper-band chorus emissions. As we have found in the previous sec-552

tion, there occurs a nonlinear longitudinal damping of the wave because the longitudinal553

electric field resulting from oblique propagation can interact with energetic electrons very554

effectively at half the gyrofrequency. Since parallel propagation is assumed in Simulations555

A and B, we cannot find the damping of the emissions at half the gyrofrequency.556

Figure 8(a) shows observations of chorus in the Earth’s magnetosphere observed by the557

Cluster spacecraft [Santolik et al., 2003; Santolik, 2008]. The physical parameters for558

this observation are the followings: fc0 = 8000 Hz, ω̃pe = 2.4, RE = 6380 km, L = 4.4,559

ã = 2.0 × 10−7. Where fc0 is the electron gyrofrequency at the equator in Hz, which560

is converted to the static magnetic field intensity B0 in nT by fc0 = 28B0. Assuming561

the parameters for energetic electrons as T⊥/T‖ = 1.5, 20 keV, Ṽ⊥0 = 0.21, Ũ‖ = 0.18,562

Nh = 0.05 Ne0, we calculate the threshold for nonlinear wave growth at the equator. The563

threshold Ω̃th changes sharply from 1 × 10−3(ω̃ = 0.25) to 2 × 10−8 (ω̃ = 0.6). The lower564

plasma frequency makes the frequency range of chorus emissions to the higher frequency,565

enhancing the upper-band chorus.566

With these parameters we also solve the chorus equations (40) and (41) with a value567

close to the threshold, i.e., Ω̃w0 = 1 × 10−3 at ω̃ = 0.26. The result is shown in Figure568

9(a). We assume that the generation of the chorus element occurs at the equator, and569

that the chorus element is free from longitudinal damping at the point of wave growth.570

As the wave packet of the rising chorus element propagates away from the equator, the571

part of the element at half the gyrofrequency undergoes longitudinal damping, making the572

chorus elements split into two parts, namely into lower-band and upper-band emissions.573

The duration time scale for the chorus element to undergo the nonlinear wave growth at574



the equator is about 100 ms, which agrees with the observations of chorus elements shown575

in Figure 8(a).576

Figure 8(b) shows observations of chorus at Saturn [Hospodarsky et al., 2008]. Using the577

parameters of the associated observations of energetic electrons at Saturn [Menietti et al.,578

2008], we calculate the threshold amplitude for the nonlinear growth of chorus elements579

at Saturn. The physical parameters are the followings: fc0 = 1300 Hz, ω̃pe = 15, Rs =580

60,000 km, L = 7.0, ã = 3.4 × 10−8, T⊥/T‖ = 1.5, 20 keV, Ṽ⊥0 = 0.21, Ũ‖ = 0.18, and581

Nh = 0.0001 Ne0. Because of the high electron plasma frequency and the low gradient582

of the magnetic field, the threshold becomes as low as Ω̃th = 3 × 10−8. Therefore, the583

amplitude threshold is well satisfied by a low wave amplitude at which a whistler-mode584

instability with a small linear growth rate may saturate.585

We also solve the chorus equations with the initial amplitude Ω̃w0 = 2.5× 10−6 and the586

initial frequency ω̃ = 0.3. As shown in Figure 9(b), the solution shows a rising chorus587

element with a duration time of 5 s. The very long duration time agrees with the duration588

time of chorus elements observed at Saturn [Hospodarsky et al., 2008].589

8. Summary and Discussion

We have further investigated the nonlinear growth mechanism of chorus emissions orig-590

inally proposed by Omura et al. [2008], and we obtain a theoretical expression for the591

nonlinear growth rate ΓN (given by (22)). From the condition of absolute instability, in592

which the wave grows at a localized region near the magnetic equator, we have derived593

the wave amplitude threshold (given by (38) and (39)) for nonlinear growth to take place594

in the inhomogeneous magnetic field. When the threshold condition is satisfied at the595

equator a rising emission is generated to form a seed of a chorus element that spans over596



the frequency range 0.1 - 0.7 Ωe0. The upper limit comes from the dispersion effect that597

invalidates the assumption of the nonlinear growth due to the large frequency sweep rate.598

As the seed of chorus element propagates away from the equator in a self-sustaining man-599

ner, the much slower group and phase velocities at higher frequency range (ω > 0.7 Ωe0)600

reduce the frequency sweep rate to a much smaller value. Since the large frequency sweep601

rate is a necessary condition for the nonlinear wave growth near the equator, the reduction602

of the frequency sweep rate at higher frequencies causes termination of the nonlinear wave603

growth. The part of the chorus element at half the gyrofrequency is subject to longitu-604

dinal wave damping arising from slightly oblique propagation. The emission is split into605

lower and upper bands at half the gyrofrequency.606

The gap in the wave spectrum at half the gyrofrequency has been discussed in previous607

studies in terms of Landau damping under the assumption of oblique propagation [Tsuru-608

tani and Smith, 1974; Coroniti et al., 1984]. However, the nonlinear longitudinal damping609

described in section 6 is different from “classical” Landau damping which depends on the610

gradient of the velocity distribution function. The nonlinear damping is due to the inho-611

mogeneity of the static magnetic field rather than the gradient of the distribution function612

at the phase velocity. This is very similar to the concept of nonlinear wave growth due to613

the electron hole, in which the finite inhomogeneity ratio S in (10) plays an essential role.614

We have derived a pair of coupled equations (40) and (41) describing the variation615

of the wave amplitude and wave frequency. We call these as “chorus equations” because616

their solutions agree very well with the amplitude thresholds and duration times of chorus617

elements reproduced by our simulations. The chorus equations also give reasonable seed618

wave solutions for the observed chorus emissions in the magnetospheres of both Earth and619



Saturn. The difference in the duration time of chorus elements is due to the difference in620

the plasma frequency ω̃pe which contribute to ξ in the first term in brackets on the left-621

hand side of (40) and the inhomogeneity ã in the background magnetic field in the second622

term in the brackets. The solutions of the chorus equations show explosive variations in623

the wave amplitude and the frequency, though these are not typically observed in reality624

or in the simulations. It may be the case that the electron hole factor Q could suppress625

the explosive wave growth. The rapid variation of the resonance velocity may cause an626

efficient entrapping of electrons that subsequently fill the electron hole thereby making Q627

much smaller. Further simulation studies are needed to evaluate Q.628

Triggered emissions, as observed in the Siple experiment [Helliwell, 1988] and the629

HAARP experiment [Golkowski et al., 2008], can be explained in terms of nonlinear wave630

growth induced by finite amplitude whistler-mode waves injected into the magnetosphere.631

Nonlinear wave growth is due to the formation of an electromagnetic electron hole, and632

differs greatly from linear growth. Even if a plasma medium with energetic electrons is633

linearly stable, nonlinear growth will occur in the presence of a finite amplitude wave634

and a sufficient flux of energetic electrons. The chorus equations (40) and (41) and the635

concept of wave amplitude threshold introduced in this paper should also be applicable636

to triggered emissions.637

The nonlinear growth theory has been developed for chorus emissions with rising tones.638

Falling tone emissions have also been observed in the magnetosphere, although they are639

not so common [Matsumoto et al., 1998; Santolik et al., 2003]. In order to be applicable640

to falling tone emissions, the analysis presented herein requires subtle modifications. We641

leave this as a target of future theory and simulations.642
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Appendix A: The second-order cyclotron resonance condition

We rewrite the cold plasma dispersion relation (3) as790

c2k2 = ω2 +
ωω2

pe

Ωe − ω
(A1)791

792

with ω2
pe = Nee

2/(ε0m0), where Ne is the cold electron density. Assuming Ne(h)/Ne0 =793

Ωe(h)/Ωe0, we obtain794

∂(ω2
pe)

∂h
=
ω2

pe

Ωe

∂Ωe

∂h
. , (A2)795

796

Differentiating both sides of (A1) with respect to h, and solving for ∂k/∂h, we obtain797

∂k

∂h
= −V −1

g

∂k

∂t
− ω2δ

2cξΩe(Ωe − ω)

∂Ωe

∂h
. (A3)798

799

We also differentiate equation (A1) with respect to time t to obtain800

∂ω

∂t
= −Vg

∂ω

∂h
. (A4)801

802

From the cyclotron resonance condition,803

VR =
ω − Ωe/γ

k
, (A5)804

805

we calculate dVR/dt as seen by a particle moving with a parallel velocity v‖. Following806

the same procedure as described in Omura et al. [2008], we obtain807

dVR

dt
=

Ωe

kγ2

dγ

dt
+

1

k

(
1 − VR

Vg

)(
1 − v‖

Vg

)
∂ω

∂t
− v‖
γk

{
1 +

ωδ2(Ωe − γω)

2Ωe(Ωe − ω)

}
∂Ωe

∂h
. (A6)808

809

The electron equation of motion is810

dv‖
dt

=
Ωwv⊥
γ

sin ζ − v‖
γ

dγ

dt
− v2

⊥
2Ωe

∂Ωe

∂h
. (A7)811

812

Considering the variation of the electron kinetic energy, we write813

dγ

dt
=

Ωwωv⊥
kc2

sin ζ . (A8)814

815



The first-order resonance condition v‖ = VR implies that dζ/dt = k(v‖ − VR) = 0. To ob-816

tain second-order resonance condition d2ζ/dt2 = 0, we calculate the second-order deriva-817

tive of the phase ζ,818

d2ζ

dt2
= k

[
d(v‖ − VR)

dt

]
= k

(
dv‖
dt

− dVR

dt

)
, (A9)819

820

where we assumed (v‖−VR) ∼ 0. Inserting (A6), (A7), and (A8) into (A9), we derive the821

result,822

d2ζ

dt2
=
ω2

t δ
2

γ
(sinζ + S) , (A10)823

824

where825

S = − 1

ω2
t δ

2

{
γ

(
1 − VR

Vg

)2
∂ω

∂t
+

[
kγv2

⊥
2Ωe

−
(

1 +
ω

Ωe

δ2

2

Ωe − γω

Ωe − ω

)
VR

]
∂Ωe

∂h

}
. (A11)826

827

The equation d2ζ/dt2 = 0 gives the second-order cyclotron resonance condition for elec-828

trons stably trapped by the wave.829

Appendix B: Derivative of the group velocity

We differentiate the group velocity Vg with respect to ω, noting that derivatives of ξ830

and δ are given by831

∂ξ

∂ω
=

Ωe − 2ω

2ω2
peξ

(B1)832

833

and834

∂δ

∂ω
=
∂δ

∂ξ

∂ξ

∂ω
= −δ

3(Ωe − 2ω)

2ω2
pe

. (B2)835

836

We obtain from (7)837

∂Vg

∂ω
=
Vg

ξ

{
∂ξ

∂ω
− ξ

δ

∂δ

∂ω
− Vgδ

c

[
2ξ
∂ξ

∂ω
+

Ωe

2(Ωe − ω)2

]}
. (B3)838

839



Substituting (B1) and (B2) into (B3) and using (3), we find840

∂Vg

∂ω
=
ξ2Vg(Ωe − 2ω)

2ω(Ωe − ω)

{
1

ξ2
+

1

1 + ξ2
− Vgδ

cξ

[
2 +

Ωeω

ξ2(Ωe − 2ω)(Ωe − ω)

]}
. (B4)841

842

Making use of (3) and (7), we obtain843

∂Vg

∂ω
=

V 2
g δ

3

4cξω(Ωe − ω)2
(Ω2

e − 4ωΩe − 4ξ2ω2) . (B5)844

845

Using (3), we factorize the quadratic in Ωe in (B5) to obtain (27).846

Appendix C: Polarization of a whistler-mode wave for quasi-parallel

propagation

The static magnetic field Bo is taken in the z direction, We assume a wave electric field847

(Ex, Ey, Ez) with a frequency ω, and with a wave number vector k = (k cos Ψ, 0, k sin Ψ)848

where Ψ is the wavenormal angle. From Stix [1992], the wave electric field (Ex, Ey, Ez)849

for a homogeneous plasma satisfies850 ⎡
⎣S − n2cos2Ψ −iD n2cosΨsinΨ

iD S − n2 0
n2cosΨsinΨ 0 P − n2sin2Ψ

⎤
⎦
⎡
⎣Ex

Ey

Ez

⎤
⎦ = 0 (C1)851

852

where853

n =
ck

ω
, (C2)854

855

and P , S, and D are given by856

P = 1 − Ωe − ω

ωξ2
, (C3)857

858

859

S = 1 +
ω

(Ωe + ω)ξ2
, (C4)860

861

and862

D =
Ωe

(Ωe + ω)ξ2
. (C5)863

864



For a non-zero electric field, the determinant of the matrix is zero. Namely, we obtain865

(P − n2sin2Ψ){(S − n2)(S − n2cos2Ψ) −D2} − n4(S − n2)cos2Ψsin2Ψ = 0 , (C6)866
867

We assume quasi-parallel wave propagation in which sin2Ψ << 1, while we retain the868

term in sinΨ. We then find869

P (S − n2 −D)(S − n2 +D) = 0 . (C7)870
871

For the transverse whistler-mode waves, we have872

n2 = S +D , (C8)873
874

which we rewrite as875

δ2 =
1

1 + ξ2
. (C9)876

877

This result is identical to the cold plasma dispersion relation for purely parallel propaga-878

tion.879

The polarization relations are given by880

Ez =
n2cosΨsinΨ

n2sin2Ψ − P
Ex (C10)881

882

and883

Ey =
iD

n2 − S
Ex . (C11)884

885

Assuming quasi-parallel propagation and substituting (C3) and (C2) into (C10) and (C11),886

we obtain887

Ez =
ω sin Ψ

δ2Ωe − ω
Ex (C12)888

889

and890

Ey = iEx . (C13)891
892



While the Ez component appears parallel to the static magnetic field, the polarization of893

the wave field in the plane perpendicular to the static magnetic field remains circular.894



Figure 1. Nonlinear growth rate ΓN as a function of wave frequency ω for the plasma

frequencies ωpe/Ωe0 = 2, 4, 8, 16 and the parameters Ut‖/c = 0.18, V⊥0/c = 0.21, ωph/Ωe0 =

0.2, Q = 0.5., and Ωw/Ωe0 = 0.0001.

Figure 2. Schematic illustration for the variation of the frequency sweep rate.

Figure 3. (a) The group velocity Vg and the phase velocity Vp as functions of frequency

ω. (b) The frequency sweep rate factor for different values of hT (∂ω/∂t)h=0 with ωpe/Ωe0 =

4.

Figure 4. The wave amplitude threshold for the generation of self-sustaining chorus

emissions for the plasma frequencies ω̃pe = 2, 3, 5, 8, (indicated by the attached numbers)

and for the parameters Ũt‖ = 0.18, Ṽ⊥0 = 0.21, ã = 2 × 10−7, ω̃ph = 0.2, and Q = 0.5.

Figure 5. Dynamic spectra of the chorus elements reproduced by (a) Simulation A:

the electron-hybrid code [after Omura et al., 2008], and by (b) Simulation B: by the

full-particle code [after Hikishima et al., 2009].



Figure 6. Solutions of the chorus equations for parameters used in (a) Simulation A

and (b) Simulation B. The dashed line shows a solution below the amplitude threshold in

each case.

Figure 7. Schematic illustration of the distribution function of energetic electrons

interacting with the longitudinal component of the whistler-mode wave packet propagating

away from the magnetic equator.

Figure 8. (a) Chorus emissions observed by the Cluster spacecraft in the Earth’s

magnetosphere (L = 4.4) [after Santolik et al., 2003]. (b) Chorus emissions observed

by the Cassini spacecraft in Saturn’s magnetosphere (L = 7.0) [after Hospodarsky et al.,

2008].

Figure 9. Solutions of the chorus equations (40) and (41) using parameters for (a) the

Earth (L = 4.4) and (b) Saturn (L = 7.0).




















