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We consider the massless Dereziński–Gérard model introduced by Dereziński and
Gérard in 1999. We give a sufficient condition for the existence of a ground state of
the massless Dereziński–Gérard model without the assumption that the Hamil-
tonian of particles has compact resolvent. © 2009 American Institute of Physics.
�doi:10.1063/1.3253976�

I. INTRODUCTION

The Dereziński–Gérard model was introduced by Dereziński and Gérard5 as an abstract model
of particle-field interaction �they call it the Pauli–Fierz model, but we call it the Dereziński–
Gérard model for the sake of clarity.�. The Hamiltonian of the Dereziński–Gérard model is given
by

H ª A � I + I � Hb + �̃�v� .

The first and second terms mean Hamiltonians of particles and a quantum field, respectively. The
third term means the interaction between particles and a quantum field.

The existence of a ground state of the massive Dereziński–Gérard model was investigated by
Dereziński and Gérard5 and Miyao and Sasaki.10 Dereziński and Gérard5 showed the existence of
a ground state of the massive Dereziński–Gérard model by specifying the essential spectrum of the
Hamiltonian, which is an analog of the HVZ theorem in many body problems. Miyao and Sasaki10

showed the existence of a ground state of the massive Dereziński–Gérard model by applying the
method developed by Arai and Hirokawa.2

In Ref. 7, Georgescu et al. discussed spectral analysis by means of Mourre estimate, limiting
absorption principle, and local finiteness of eigenvalues in the massless Dereziński–Gérard model.
In Ref. 8, Gérard showed the existence of a ground state of the massless Dereziński–Gérard model
under the assumption that the Hamiltonian of particles A has compact resolvent. In Ref. 4, Bru-
neau and Dereziński extended the results of Refs. 5 and 8 by using quadratic form techniques
under the same assumption as that of Ref. 8.

In the present paper, we consider the same problem as that of Ref. 8 without the above
assumption. This is a big difference between Refs. 8 and 4 and the present paper.

The present paper is organized as follows. In Sec. II we describe the model considered in this
paper and state the main result. In Sec. III, we first prove an energy bound for the Dereziński–
Gérard model. Second, we state commutation relations for the generalized annihilation/creation
operators and relative boundedness of them. Finally, we prove the self-adjointness of the total
Hamiltonian. Section IV is a preliminary to Sec. V. In Sec. IV, we prove some estimates which are
used to prove the existence of a ground state of the massless Dereziński–Gérard model. Section V
is devoted to the proof of the existence of a ground state of the massless Dereziński–Gérard
model.
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II. DEFINITION OF THE MODEL

In the present paper, we denote the inner product and the norm of a Hilbert space X by �· , ·�X
and � · �X, respectively. The inner product is antilinear in the first variable. If there is no danger of
confusion, then we omit the subscript X in �· , ·�X and � · �X.

For a linear operator T on a Hilbert space, we denote its domain by D�T�. If T is densely
defined, the adjoint of T is denoted by T�. For linear operators S and T on a Hilbert space, D�S
+T�ªD�S��D�T� unless otherwise stated.

For a self-adjoint operator S on a Hilbert space, we denote its spectrum and its essential
spectrum by ��S� and �ess�S�, respectively. The spectral measure associated with S is denoted by
ES� · �. If S is bounded below, then we set

E0�S� ª inf ��S�

and call it the ground state energy of S. We say that S has a ground state if E0�S� is an eigenvalue
of S; in this case, each nonzero vector in ker�S−E0�S�� is called a ground state of S. The number
m�S�ªdim ker�S−E0�S�� is called the multiplicity of the ground state of S.

To describe the Bose field, one uses the boson Fock space over a separable complex Hilbert
space X,

Fb�X� ª �
n=0

�

�
s

n

X = �� � 	��n�
n=0
� �n � 0,��n� � �

s

n

X,�
n=0

�

���n��2 � � ,

where � s
nX denotes the n-fold symmetric tensor product of X with � s

0
ªC �the space of complex

numbers�. The vector �ª 	1,0 , . . .
 is called the Fock vacuum in Fb�X�.
One of the main objects on Fb�X� is the annihilation operator a�f� which is a densely defined

closed linear operator on Fb�X�, such that for all �= 	�n
n=0
� �D�a�f���, �a�f�����0�=0, and

�a�f�����n�=�nSn�f � ��n−1��, n�1, where Sn is the symmetrization operator on �nX. The adjoint
a�f��, which is called the creation operator, and the annihilation operator a�g� obey the canonical
commutation relations

�a�f�,a�g��� = �f ,g�, �a�f�,a�g�� = 0, �a�f��,a�g��� = 0

for all f ,g�X on the dense subspace,

F0�X� ª 	� � Fb�X��there exists a number n0 such that ��n� = 0 for all n � n0
 ,

where �· , ·� means the commutator.
For every self-adjoint operator S on X, one can define a self-adjoint operator d	�S�, called the

second quantization of S, by

d	�S� ª �
n=0

�

S�n�,

with S�0�
ª0 and S�n� is the closure of

where I denotes the identity and �̂nD�S� algebraic tensor product of D�S�. If S is non-negative,
then so is d	�S�. The second quantization Nbªd	�I� of the identity is called the number operator.

As the state space of the Dereziński–Gérard model, we take the tensor product Hilbert space,
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F ª H � Fb�K� ,

where H is a separable Hilbert space and K=L2�Rd�. The Hilbert space F is identified with the
space

�
n=0

�

�H � � s
nK� ,

and we use this identification freely in what follows.
The subspace D0 of F is defined as follows:

D0 ª 	� � F�there exists an n0 such that, for all n � n0, ��n� = 0
 .

Let A be a self-adjoint operator on H. Let 
 be a non-negative, injective, and self-adjoint operator
on K. A typical example of 
 is the multiplication operator by the function 
�k�=�m2+ �k�2. Here
m�0 is the mass of the boson. The function 
 represents a dispersion relation of one free boson
associated with the Bose field under consideration.

We define an operator Hb by

Hb ª d	�
�

acting on Fb�K�. The free Hamiltonian of the Dereziński–Gérard model is given by

H0 ª A � I + I � Hb.

To define the interaction part of the Dereziński–Gérard model, we introduce an analog �̃�v� of the
usual Segal’s field operator for a bounded operator v from H to H � K. To do this, we first define
the operator ã��v�, which is an analog of the usual creation operator. The domain and the operation
of ã��v� is as follows �Refs. 5 and 10�:

D�ã��v�� ª �� = ���n��n=0
� � F��

n=0

�

n��IH � Sn��v � I�s
n−1K���n−1��2 � � ,

�ã��v����0�
ª 0, �ã��v����n�

ª
�n�IH � Sn��v � I�s

n−1K���n−1�, n � 1.

It is easy to see that D�ã*�v���D0. Thus the operator ã*�v� is a densely defined. We set

ã�v� ª �ã��v���.

The domain and the operation of ã�v� is as follows:

D�ã�v�� ª �� = ���n��n=0
� � F��

n=0

�

�n + 1���IH � Sn��v�
� I�s

nK���n+1��2 � � ,

�ã�v����n�
ª

�n + 1�IH � Sn��v�
� I�s

nK���n+1�.

It is easily verified that ã��v� �ã�= ã or ã�� is closed and D0 is a core for ã��v�.
We define an analog of Segal’s field operator as follows:

�̃�v� ª
1
�2

�ã�v� + ã��v�� .

The total Hamiltonian of the Dereziński–Gérard model is defined as follows:
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H ª H0 + �̃�v� .

Throughout this paper, we assume the following conditions.
(A.1) A is bounded below.
(A.2) (Gap condition) �−E0�A��0, where �ª inf �ess�A�.
For m�0, we set


m ª 
 + m ,

Hm ª A � I + I � d	�
m� + �̃�v�

= H + mI � Nb. �2.1�

(A.3) There exists an m0�0, such that if m� �0,m0�, Hm has a ground state.
Remark 1: We make some comments on the assumption (A.3). As stated in Sec I, there are

sufficient conditions that the massive Dereziński–Gérard Hamiltonians have a ground state. In
spite of these results, the reason why we adopt the assumption (A.3) is to make the present paper
self-contained.

To state the following assumption, for s�R, we introduce a subspace V

s of B�H ,H � K� by

V

s
ª 	v � B�H,H � K���I � 
�sv � B�H,H � K�
 .

In what follows, we abbreviate �I � 
�sv as 
sv.
Remark 2: If 
 is strictly positive, then V


s =B�H ,H � K� for s0.
(A.4) v�V


−1.
Remark 3: One can easily see that v�V


−1 implies v�V

−1/2. The referee remarked this fact to

the author. The author is thankful to the referee for it.
The following theorem is the main theorem of the present paper.
Theorem 2.1: �Existence of a ground state for the massless case� Assume (A.1)–(A.4). Sup-

pose that

1

4�� − E0�H��2 �v�2�
−1v�2 +
�
−1v�2

2
� 1.

Then the massless Dereziński–Gérard model has a ground state.

III. ELEMENTARY RESULTS FOR THE DEREZIŃSKI–GÉRARD MODEL

In this section, we establish some elementary results for the Dereziński–Gérard model. These
results hold independent of whether H is massive or massless. We use these results freely through-
out this paper.

Proposition 3.1: �Energy bound for the Dereziński–Gérard Hamiltonian�

E0�H�  E0�A� .

Proof: Let u�D�A� with �u�=1. Then, by the variational principle,

E0�H�  �u � �,Hu � �� = �u,Au� .

Using the variational principle again, we obtain the desired result. �

Proposition 3.1 means that the interaction does not raise the ground state energy in the
Dereziński–Gérard model.

Let v�B�H ,H � K�. The operator v corresponds to the B�H�-valued function v� · � on Rd

defined by
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v�k�� ª �v���k�, � � H, k � Rd.

As commutation relations for ã��v�, the following commutation relations hold.
Theorem 3.2: �Reference 1� Let v1 ,v2�B�H ,H � K�. If �v1�k�� ,v2�k���=0 for a.e. k ,k�

�Rd, then the following commutation relations hold on D0:

�ã�v1�, ã��v2�� = v1
�v2 � I, �ã�v1�, ã�v2�� = 0, �ã��v1�, ã��v2�� = 0.

The following relative boundedness of ã�v� is fundamental.
Theorem 3.3: �Reference 6� For v�V


−1/2, D�ã�v���D�I � Hb
1/2�, and, for ��D�I � Hb

1/2�,

�ã�v���  �
−1/2v��I � Hb
1/2�� .

Substituting I into 
 in the above theorem, we obtain the following relative boundedness of ã�v�
with respect to I � Nb

1/2.
Corollary 3.4: For v�B�H ,H � K�, D�ã�v���D�I � Nb

1/2�, and, for ��D�I � Nb
1/2�,

�ã�v���  �v��I � Nb
1/2�� .

Theorem 3.3 and the Kato–Rellich theorem imply the self-adjointness of the total Hamiltonian.
Theorem 3.5: �Self-adjointness of the total Hamiltonian� Let v�V


−1/2. Then the total Hamil-
tonian H is self-adjoint and bounded below. Moreover, any core of H0 is also a core of H.

IV. SOME LEMMAS FOR THE MASSIVE CASE

We devote this section to the preparation of some lemmas needed in the proof of Theorem 2.1.
In this section, we assume that the operator 
 is strictly positive.

Combining Lemma 4.2 in Ref. 2 with Theorem VIII.4 in Ref. 11.
Lemma 4.1: Let 	f l
�D�
1/2� be a complete orthonormal system of K. Then for all �

�D�I � Hb�,

�
l=1

�

�I � a�
−1/2f l��,I � a�
1/2f l��� = ��,I � Nb�� .

We introduce a subspace Ffin�
� of Fb�K� and a subspace D
 of F as follows:

Ffin�
� ª L	�,a�g1��
¯ a�gn����n � 1,g1 ¯ gn � D�
�
 ,

D
 ª D�A��̂ Ffin�
� .

For f �K, we define a bounded operator v f from H into H � K by

v f� ª � � f , � � H .

Note that

ã�v f� = I � a�f� .

Lemma 4.2: For f �D�
�, we define

T�f� ª I � a�
f� +
1
�2

v f
�v � I .

Let �E be an eigenvector of H with eigenvalue E. Then, �E�D�T�f���D�I � a�f��, I � a�f��E

�D�H�, and �H−E�I � a�f��E=−T�f��E.
Proof: For ��D
,
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I � a�f��H� = �I � a�f��,H�� + HI � a�f���

= 	�I � a�f��,I � Hb� + �I � a�f��,�̃�v��
� + HI � a�f���

= − I � a�
f��� −
1
�2

v�v f � I� + HI � a�f���

= − T�f��� + HI � a�f��� .

Therefore, we have

�I � a�f��E,H�� = ��E,I � a�f��H��

= ��E,− T�f���� + ��E,HI � a�f����

= − �T�f��E,�� + �E�E,I � a�f����

= − �T�f��E,�� + E�I � a�f��E,�� .

Since D
 is a core of H, the above equality holds for ��D�H�. Hence, we obtain

I � a�f��E � D�H�

and

�H − E�I � a�f��E = − T�f��E.

�

The next two lemmas are key lemmas to prove the main theorem.

Lemma 4.3: Let �̃0 be a normalized ground state of H. Then

��̃0,I � Nb�̃0� 
�
−1v�2

2
.

Proof: For f �D�
�, by Lemma 4.2, we have

0  �I � a�f��̃0,�H − E0�H��I � a�f��̃0�

= − �I � a�f��̃0,T�f��̃0�

= − �I � a�f��̃0,I � a�
f��̃0�

−
1
�2

�I � a�f��̃0,�v f
�v � I��̃0� .

Substituting 
−1/2f l into f , we have

�I � a�
−1/2f l��̃0,I � a�
1/2f l��̃0�  −
1
�2

�I � a�
−1/2f l��̃0,�v
−1/2f l

� v � I��̃0� . �4.1�

Summing up with respect to l, we have

�
l=1

�

�I � a�
−1/2f l��̃0,I � a�
1/2f l��̃0� = ��̃0,I � Nb�̃0� �4.2�

by Lemma 4.1.
On the other hand,
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�
l=1

�

�I � a�
−1/2f l��̃0,�v
−1/2f l

� v � I��̃0� = �
l=1

�

�ã�v
−1/2f l
��̃0,�v
−1/2f l

� v � I��̃0�

= �
l=1

�

��v�v
−1/2f l
� I�ã�v
−1/2f l

��̃0,�̃0�

= �
l=1

�

�ã�v
−1/2f l
v
−1/2f l

� v��̃0,�̃0� = �ã�
−1v��̃0,�̃0� .

�4.3�

In the last equality, we used the fact that

�
l=1

�

v
−1/2f l
v
−1/2f l

� = �I � 
�−1.

By Corollary 3.4, we have

���ã�
−1v��̃0,�̃0���  �
−1v��I � Nb
1/2�̃0� = �
−1v���̃0,I � Nb�̃0�1/2. �4.4�

Thus, �4.1�–�4.4� imply that

��̃0,I � Nb�̃0� 
�
−1v�2

2
.

This proves the lemma. �

Let EA be the spectral measure associated with A. We set 	�r
r=1
q

ª��A�� �E0�A� ,���q��.
We define an operator Qr on H by QrªEA��E0�A� ,�r�� and set Qr

�
ª I−Qr. We denote the

orthogonal projection onto the subspace spanned by the Fock vacuum � by P�.

Lemma 4.4: Let �̃0 be as above. Then

��̃0,Qr
�

� P��̃0� 
1

4��r+1 − E0�H��2 �v�2�
−1v�2.

Proof: Simple calculations show that

Qr
�

� P�H = Qr
�A � P� +

1
�2

Qr
�

� P�ã�v�

and

Qr
�

� P��H − E0�H���̃0 = 0.

Thus, we have

��̃0,Qr
��A − E0�H�� � P��̃0� = −

1
�2

�Qr
�

� P��̃0, ã�v��̃0� .

By using the spectral theorem, we have

��̃0,Qr
��A − E0�H�� � P��̃0� � ��r+1 − E0�H����̃0,Qr

�
� P��̃0� .

Hence, we have
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��̃0,Qr
�

� P��̃0� 
1

�2��r+1 − E0�H��
�Qr

�
� P��̃0��ã�v��̃0� .

Therefore, we obtain

��̃,Qr
�

� P��̃0� 
1

2��r+1 − E0�H��2 �ã�v��̃0�2.

By applying Lemma 4.3 and the inequality

�ã�v��̃0�2  �v�2�I � Nb
1/2�̃0�2,

we obtain

��̃0,Qr
�

� P��̃0� 
1

4��r+1 − E0�H��2 �v�2�
−1v�2.

�

V. EXISTENCE OF A GROUND STATE OF THE MASSLESS DEREZIŃSKI–GÉRARD
MODEL

This section is the main part of the present paper. We shall prove the existence of a ground
state of the massless Dereziński–Gérard model by applying Lemma 5.1 below. Lemma 5.1 was
established by Arai and Hirokawa in Ref. 2. Since then, this lemma has been widely used to prove
the existence of a ground state of massless models by many researchers.2,3,8,9

Lemma 5.1: (Reference 2) Let An and A be self-adjoint operators on a Hilbert space H which
are bounded below. Suppose that An has a ground state �n, E0�An� converges to E0�A�, and An and
A have a common core D, such that An� converges to A� for all ��D. If there exists a nonzero
vector �0�H such that �n converges to �0 weakly, then �0 is a ground state of A.

Let H be the Dereziński–Gérard Hamiltonian and Hm be the operator defined by �2.1�. By the
assumption �A.3�, there exists a normalized ground state ��m� of Hm. By the weak compactness of
the closed unit ball of the Hilbert space F, there exists �0�F and a subsequence 	��mj�
 which
converges to �0 weakly with mj↘0. To apply Lemma 5.1 above, we must check that �1� �0

�0, �2� E0�Hm� converges to E0�H� as m→0, and �3� the existence of a common core of H and
Hm on which Hm converges to H strongly.

Recall the subspace D
 introduced in Sec. IV. By the general theory of tensor product of
operators, D
 is a core of H0. This fact, Theorem 3.5 and Eq. �2.1� imply the following fact.

Lemma 5.2: D
 is a common core of H and Hm and Hm�→H� for all ��D
.
Lemma 5.3:

E0�Hm� → E0�H� .

Proof: By Lemma 5.2 above, Hm converges to H in the strong resolvent sense. Hence

lim sup
m→0

E0�Hm�  E0�H� .

On the other hand,

Hm � H for all m � 0.

Therefore,

E0�Hm� � E0�H� for all m � 0.

So we obtain
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lim inf
m→0

E0�Hm� � E0�H� .

Thus, we have the desired result. �

In the proof of Theorem 2.1, we use the following operator inequality.
Lemma 5.4: �Reference 2�

Qr � P� � I − I � Nb − Qr
�

� P�.

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1: The conditions �2� and �3� above correspond to Lemma 5.3 and Lemma

5.2, respectively. So, we have only to check the condition �1�.
By Lemmas 4.3, 4.4, and 5.4, we have

���mj�,Qr � P���mj�� � 1 − ���mj�,I � Nb��mj�� − ���mj�,Qr
�

� P���mj��

� 1 −
�
mj

−1v�2

2
−

1

4��r+1 − E0�H��2 �v�2�
mj

−1v�2

� 1 −
�
−1v�2

2
−

1

4��r+1 − E0�H��2 �v�2�
−1v�2.

Tending mj→�, we have

��0,Qr � P��0� � 1 −
�
−1v�2

2
−

1

4��r+1 − E0�H��2 �v�2�
−1v�2.

The right hand side of the above inequality converges to

1 −
�
−1v�2

2
−

1

4�� − E0�H��2 �v�2�
−1v�2

as r→�. Therefore, for sufficiently large r,

��0,Qr � P��0� � 0.

Hence �0�0. By applying Lemma 5.1, we have the desired result. �
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