<table>
<thead>
<tr>
<th>タイトル</th>
<th>イオンチャネリングによる 1T-TaS₂及び 2H-TaSe₂の構造相転移の研究 廃棄金属カルコゲナイド 低次元性無機化合物の相転移と化学結合 斜研費研究会報告</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>阿部 宽 芳賀 哲也 岡本 幸雄</td>
</tr>
<tr>
<td>発行機関</td>
<td>物性研究 東京大学物理研究所長部</td>
</tr>
<tr>
<td>日付</td>
<td>1984-06-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91345</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>publisher</td>
</tr>
<tr>
<td>所属機関</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
イオンチャネリングによる1T-TaS₂及び2H-TaSe₂の構造相転移の研究

北海道大学工学部原子工学科 北海道大学工学部共通物理* 阿部 寛, 芳賀 賢也, 岡本 幸雄*

イオンチャネリング効果は, チャネル軸を構成する原子列の格子面の平行振動にかかわる格子位置の微小変位と関連があり, これにより固体イオンビームを固体結晶の構造相転移の研究に利用できる可能性を示している。ここでは, 1T-TaS₂及び2H-TaSe₂の構造相転移に対して高速イオンをプローブとして得られた実験結果について述べる。

実験は, 高速イオン効果を用いて行った。イオンとしては, バンデガラス型原子加速器による5 MeVのHe⁺イオンを使用した。具体的な測定は, He⁺イオンビームを試料のC軸方向のチャネルに一致させたときに含む散乱としているイオンの収量 - Ψ min と光含む散乱収量のC軸に対する角度依存性である。

S. 実験結果及び考察

1. 1T-TaS₂

図に典型的な1T-TaS₂のΨ min の温度依存性を示す。図中 Ψ min はチャネル方向からの散乱のrandom 方向の後方散乱量を規格化されたもので, Ψ min は次のような関係を示している。

Ψ min = C ∑<|1Ur|²> + Ψ D

で表される。ここで C Ψ D はチャネル軸に垂直な面内における原子面のroot mean square 振動に帰する。Ψ D は結晶内の格子を含む寄与を表す項で,
ここではその温度依存性を無視する。サ損失の後方散乱が圧縮されて上下に大きく変化する。1T-TaS₂の場合, 実験結果と計算結果がよく一致している。平準化係数の関係を示すphonon mode がT=T₀でソフト化し, T=T*で凍結するとする。ソフト化しない他のphonon modesの温度依存性を無視すると, C ∑<|1Ur|²> = Ψ min とおくことができる。

この式 Ψ min はソフト化するphonon mode のΨ min の寄与を表す。平均場近似では, Ψ min は, 1)

Ψ min = C · \left\{ 1 - \frac{1}{1-x} \right\} \left\{ 1 - \frac{1}{3} \left(\frac{1}{1-x} \right)^2 \tan^{-1} \left(\frac{1-x}{x} \right) \right\}

(2) で与えられる。ここと,
\(x = (T-T_c)/T_0\) である。1 図の A と C 領域の \(\chi_{\text{min}}\) は (2) 式によってよく記述され、この領域で示す mode の phonon のソフト化が進行していることを反映しているものと考えられる。(2) \(\chi_{\text{min}}\) は nearly commensurate 相 (NC)-commensurate 相 (C) の相転移を、0.5-0.5程度の比較する、ピークを示す。(1 図, C.D) 1T-TaS_2 における NC-C 相転移は、非常に複雑で、一次相転移の際には分子変数が \(C/C \sim 1 \times 10^3\) 程度の阻抗値を持ち、2C-D のピークは、転移と伴う大きな変化により C 軸に対して乱相に傾いた domain 構造はモザイク構造が生成されるために生じると考えられる。C, D の disordered state は、metastable な性質をもつ、ピークの中を試料に依存して 2\sim15K に渡って分布する傾向を示す。Jericho による 1T-TaS_2 における超音波吸収実験結果は、我々の \(\chi_{\text{min}}\) の実験結果との間に多くの相似性を示していることを注目し、\(\chi_{\text{min}}\) の変動が示されている。(1) cooling の過程では、123K と 88K に \(\chi_{\text{min}}\) の変動が存在し、一方 heating の過程では、95K, 112K, 123K の 3 点で \(\chi_{\text{min}}\) の異常がみられる。これは C 相から温度上昇すると、112K で incommensurate 相 (IN) に移る前に、もう一つの相転移を伴う事を示しており、これは stripe 相 (S) として詳細に研究された相である。(2) 2H-TaSe_2 の \(\chi_{\text{min}}\) のもう一つの特徴は、Normal 相より IN \(
rightarrow\) C に \(\chi_{\text{min}}\) の値が C 相に近づく際に従って段階的に小さくなっていることである。これは相リテリリーが normal 相で一番大きく、C 相に近づくにつれてそれが減少する事を示している。これは、内製等 6) が 2H-TaSe_2 の相転移現象の解析で指摘した McMillan's phonon entropy model に密接に関連した現象と考えることが出来る。