<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>黒鉛の電子構造 化学結合と電子構造 低次元性無機化合物の相転移と化学結合 科研費研究会報告</td>
</tr>
<tr>
<td>Author</td>
<td>森田 章 朝比奈 秀夫</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 京都大学理学部物理学科 1984, 42(3): 26-27</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91350</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
黒焔の電子構造

東北大学理学部物理学科
森田章、朝比奈秀夫

§1. はじめに

第V族元素のうちと素、アンチモン、亜鉛は常温常圧ではヒ素型構造の半金属相をとるのに対して、黒焔は層状構造の半導体である黒焔が安定相である。黒焔は加圧すると約50 kbarあたりで半金属相のヒ素型構造に、さらに110 kbarあたりで単純立方構造の金属相に相転移し、この金属相は超伝導を示す。1978年頃我々のグループが黒焔のバンド構造や圧力誘起相転移の理論の研究を始めるともなく、外国に先駆けて、我国で黒焔の結晶構造の研究に成功し、そのため黒焔の物性研究が我国で急速に展開した。以下では、まず黒焔の結晶構造について簡単に説明し、次節でそのバンド構造の計算結果と関連する実験について述べる。

黒焔は層状構造をなしていて、基本単位は4個の原子を含む。一つの層の層は第一図の構造を持っているが、原子子間の最近接原子と3p軌道による共役結合をしている。このように層間では化学結合力が飽和していることから、黒焔の層と層の間の相互作用はファン・デルワールス的である。

§2. バンド構造

グラファイトの場合に張って、まず一つの層の2次元のバンドを考察してみるのが有益である。単一層の黒焔はH点に約2 eVの直接ギャップを持つ半導体である。その間電子帯の上部は3p軌道に、伝導帯の下部は3p反結合軌道に対応する。両者の平均ギャップ・エネルギーは約4 eVで、原子子間の一重共有結合の結合エネルギー2.2 eVの2倍になっている。

実際の黒焔のバンドは単一層の2次元的なバンドに層間の相互作用による層方向の電子の運動が加わる。その結果、第2図に示されるように、Z点に約0.3 eVの狭い直接ギャップを持つ半導体になる。

この黒焔のバンド構造を調べる実験としてはこれまでにサイクロトロン共鳴、ギャップ・エネルギー測定の赤外から真空紫外にかけての光学的反射率、内殻準位（2s, 2p）の軟X線領域の反射率、角度分解光電子分光、UPS, XPS, K-発輝及び吸収スペクトルなど数多くの測定がなされてきた。これらの実験結果はいずれも上記のバンド計算の結果を用いて定量的ないし半定量的に説明できる。ここでは、第1表にサイクロトロン共鳴から求めた有効質量の実測値と理論値との比較を、第3図にUPS, XPSの測
定結果とバンド計算から求められたDOSとの比較を示す。実験と理論との一致は大変良い。

第1回 電子のキャリヤーの有效質量

<table>
<thead>
<tr>
<th>キャリヤーの種類</th>
<th>ホール</th>
<th>電子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a b c</td>
<td>a b c</td>
</tr>
<tr>
<td>純晶形</td>
<td>合計</td>
<td>1.16 0.17 0.09</td>
</tr>
<tr>
<td>実験値</td>
<td>1.027 0.128 0.0825</td>
<td>0.848 0.280 0.0761</td>
</tr>
<tr>
<td>有効質量</td>
<td>1.16 0.17 0.09</td>
<td></td>
</tr>
<tr>
<td>(m* / m_e)理論値</td>
<td>1.16 0.17 0.09</td>
<td></td>
</tr>
</tbody>
</table>

第3図
電極の空電子帯の
(a) 状態密度
(b) XPS及び
(c) UPSのスペクトル*