<table>
<thead>
<tr>
<th>タイトル</th>
<th>CeBi<sub>1-x</sub>Te<sub>x</sub>とSmB<sub>6</sub>の中性子散乱実験 (VII. 格子系および電子-フォノン相互作用、価数振動状態の総合的研究、科研費研究会報告)</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>遠藤 康夫</td>
</tr>
<tr>
<td>発表誌名</td>
<td>物性研究</td>
</tr>
<tr>
<td>発行年</td>
<td>1984年9月20日</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91417</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

京都大学
CeB\textsubscript{1-x}Te\textsubscript{x} と SmB\textsubscript{6} の中性子散乱実験

中島 大理 逹藤 康夫

§1 引

以前より我々の研究室で行われてきた中性子散乱研究に関して、数多くの発表があり、特に Ce\textsubscript{1-x}Te\textsubscript{x} の散乱強度についての結果が著者らの研究室で報告されている。

Ce\textsubscript{1-x}Te\textsubscript{x} と SmB\textsubscript{6} の体系は P-1 構造が基となるが、我々の研究室ではこれらの体系の研究に特化している。特に Ce\textsubscript{1-x}Te\textsubscript{x} の研究においては、P-1 構造の体積変化に関する研究が特に注目されている。

§2 Ce\textsubscript{1-x}Te\textsubscript{x} (x = 0.05, 0.075, 0.1)

中性子散乱実験は、装置実験へ及び実験室での散乱強度測定を含めた。実験結果の一部は以下の通りである。

- 0.05 の場合、高い散乱強度が観測された。
- 0.075 の場合、中程度の散乱強度が観測された。
- 0.1 の場合、低い散乱強度が観測された。

これらの結果は、Ce\textsubscript{1-x}Te\textsubscript{x} の性質を示すものであり、今後も、この体系の研究を進めていく予定である。
定を目的として、電気伝導率の測定を行った。
実験を始め前の予測では、Te の増加に従って、ホール係数は減少し、温度 41 (K) で抵抗値は
低い。検出された異常相 (X ≈ 0.1) の強磁性
パラ相の出現は期待にふさわしい。
X = 0.05, 0.075 の 2 通り試料に共に X に対する
異常相の出現が見られ、各々 21.5 K と
17.5 K にあり、これらのネックは、定量的な相
変化の結果とよく一致するが、最終に測定と違って
真数の (0.01) 強磁性の存在が、温度範囲で
測定されている。

これらの結果から、上述したとおり成り立って
いるが、わゆる Te の CaB にする強磁性
相の特性を考慮する必要がある。即ち CaB は
パラメータの関数で、Te を以外で触発される
強磁性を示し、CaB は不変である。

3. SmB

3 サイドの結晶 (5mm 中) の非弾性散乱を含めて、低温におけるパッケ
ギャップは、そのように思われる数の特性 (電気伝導、比熱、NMR)に
異常の温度的推移の目としている。

非弾性散乱の測定における形状の大小と (体積) 結晶の不均一であるが、15Sm の関係
元素の性質を考慮した研究がある。そこで我々は今回成長した可能となった単結晶であると想定することができ、その内孔化性と散乱研究をさらに追加し、さらにその面に電流を測定する予定である実験を行った。

実験は ORNL で一覧表を基に Acoustic phonon の測定と室温にて行われた。

著者の写真は写真をベースとした。SmB₆ 単結晶の単結晶内においての非弾性散乱として、電子と電子の相互作用を示す。この条件に低温におけるフォトニック実験に必要不可欠な準備と推定すると、次の結果に示す。

\[
\frac{\mu_e}{\mu_{\text{eff}}} = \frac{1}{1 + \hbar^2 / 2m} \left(\frac{\nu}{\hbar} \right)^2
\]

又合計散乱は 60°で測定した。電子の積分バンドをもつフォトニック領域の測定に合計散乱と 60° と 90° の両方があり、全ての方向から collimation が異なり、今 60° と 20° すなわち変化の差異は

\[
\sqrt{\frac{20}{60}} \approx 0.67
\]

と見られる。従って低温での実験に対して散乱強度を変化させる範囲で得られた 20° から 60° 区分の計測が可能である。この実験は SmB₆ 単結晶の測定及び 20° から 60° の計測で、更に 10°から 20° の検討が追加される。右の図は室温の寄与を示すもので、合計散乱の増加と反対に示されている。LaB₆ のように示すと、室温デプトとの傾向が示されている。