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Abstract

After proposing a new refined physico-mathematical frame for the

covariant application of the principle of least action, the principle

with the new frame has been applied to the persistent current classical

model of the electron, deriving all the basic kinematical equations of

the electron. By adopting the quantization procedure of tpe new frame,

these c-number equations transit directly to the Dirac type q-number

equations of the electron with g = - 2 (1 + et./21T). The derived equations

are delicately different from the currently accepted equations in their

highest order accuracy, with definite physical origin for the differen­

ce. The Thomas precession and the spin-orbit coupling are analyzed i~

detail, clarifying the origin of the difference between the expressions

in classical physics and in the Dirac Hamiltonian. It has been found

that the equation for the precession is almost independent of the cont­

ribution of the external vector potencial to the spin angular momentum,

S~v , and, if it contributes with a factor, 1/2, the induced change in

the model makes the electron spin perfectly diamagnetic, indicating the

coexistence of the angular momentum and flux quantizations. The princi­

ple of the factor two is proposed at the interface between classical and

quantal physics.

§l. Introduction

In 1974, we have proposed a persistent Vortex Ring model of the ele­

ctronl }. We refer it as VR hereafter. Attractive feature of this semi­

classical model is that it has no adjustable parameter and has almost all

The author believe that this paper and ~ef. 3) should be printed in more well­

distributed journal. However, there are serious publication difficulties in such

journals, for which the author is not responsible.
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non-wave characters of the electron, in complete conformity with the

classical electromagnetism. An application of this model for the under­

standing of the hyperfine field in magnetic oxides was presented in 1981

2) In 1983, we have proposed a new frame in physics3 ). The guiding

principle of the new frame is that, there must be a general and analyti­

cal interconnection between the classical and quantum physics, because

the two frames are the different side views of the same object, having

the accuracy of 10-8 or more. The proposed interconnection is that the

classical physics described by c-nurnber equations transit directly to

the quantum equations, when regarded them as q-number equations with

very simple, mostly well-known ways of the quantization. The new frame

has a great advantage for dealing with complicated quantum systems, be­

cause we can utilize the classical concept up to its limit, and, with

the use of the concept of classical ensemble adequately, many of the qu­

antum characters of the system can be obtained classically.

Now in the new frame, in order to establish analytical continuation

between classical andquantal physics, we needed to have the best clas­

sical model of the electron for the consistent description of the clas­

sical Maxwell-Lorentz electromagnetism. We found that th~ VR model sa­

tisfies this requirement.

We know that there is an old concept of point charge electron, in

which the classical size of the electron is assumed to be less than 10-15

m. Since we take VR as the classical electron, the classical size is in
-12 -2 0 . .

the order of 10 m = 10 E\, which necessitates to abandon the point

electron concept. This must be due in the new frame, because we have

needed to have a strictly self-consistent Maxwell-Lorentz classical elec­

tromagnetism with electrons, whereas the electrostatic energy associated

with the point charge electron in the size of less than la-15 m reaches

to more than 10 times of the rest energy of the electron. Therefore,

this old model is self-inconsistent by itself, as the basic entities in

the classical electromagnetism of the new frame. More detailed reasons

will be given in Appendix A.

Now, there has been, however, a lack in the knowledge about the re­

lativistic kinematical equations expected from this model. We have found

that the least action principle and principles of the new frame applied

to VR can deduce strictly and precisely the desired relativistic kinema­

tical equations of the electron, which are identical to the currently

accepted equations in the usual accuracy, but contain a few higher order

terms with reasonable physical structures. Quantized wave equations

have also been obtained by regarding these c-number equations as the q­

number equations. This paper presents its outline, together with many

newly found suggestive ideas for the electron.
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Rigorous Deduction of the Dynamical Equations ...

It is to be noted that, since electrons and electromagnetic fields

are the two principal entities, on which our classical frame of physics

has been built up, the new frame of physics has a strong emphasis on .

these two entities. It is further noted that the present analyses are

all effective for the muon. But, we are not in a position to challenge

the present day Q.E.D. By the new frame, we propose another useful app­

roximation of physics, which is complementary to Q.E.D. and is effective

for the fields, where the Q.E.D. is not easy to apply. The accuracy is

less but is sufficient for them. An example is the thermo-statistics

of the orbital diamagnetism of many electrons, where, we believe, the

new frame has corrected the previous misunderstanding 3 ). Complicated

macroscopic quantum systems, which are important in solid state physics

and devices, are generally such systems.

We use the MKSP systeml ) , or, the MKS rationalized Gauss unit sys­

tem, throughout. The difference in the formula from the CGS Gauss unit

system is only in the factor of 4n or 1/4n.

§2. A brief review and the basic data of the VR model

The essential feature of the model will be summarised as follows.

1). It is a tiny ring current with the ring radius of

I a trOR = Ig A = 2(1 + --)-- =e 2n mc
7.73185 x la- 13m (2-1)

and with a very small cross sectional radius, on of the ring segme~t. In

this paper, the quantities in a proper frame will be indicated by a left

superscript ° The values of on are (1.241 or 0.967) x la-386 m, for the

uniform or surface charge and current distributions t . In the following

calculations, in order to simplify the situation, we assume a nearly sur­

face charge and current distributions. Although we do not believe that

the Maxwell electromagnetism can simply be extended to such a tiny re­

gion, the attractive feature of VR model is that its essential characters

are independent of the details of these super-microscopic structures.

2). The total energy without external fields consists of electric and

magnetic energies °UE,O and °UM,O.

2 2 2 a.
e

2
[ln~OR]°mc e

°rnc (1 2n
°UE , a = '2 + = + a )

8n 2 oR 2 I + 8n2oR n
2TI

2 2 2 2
°mc e °mc 1

°DM, a = "2 = --( a )
e [In 8 ° R - 2]

8n 2 oR 2 ... 1 + 8rr2oR on
2rr

t We had small mistake for the values of on = or the originala in paper.

(2-2 )

(2-3)
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Please note the subtle rel.'ation between oR, a, and In BOR/on of the
electron.

3). The Magnitudes of the angular momentum and the magnetic moment in

each single classical VR are nand 2(1+ a/2~)~B ' respectively, so that

an ensemble concept is used for bridging the model with the real quantal

characters of the electron. The spin state, a, or, the state having the

spin directed along +z axis, is represented by an ensemble, in which the

top of the angular momentum vectors distribute uniformly over the upper

hemisphere. Hence, the averaged charge distribution becomes spherical

with the angular momentum and magnetic moment components of

tr
"2 and (1 + 2

a
rr) ~B (2-4 )

respectively. Therefore, VR has an intrinsic anomalous magnetic moment,

being in agreement with the result of Q.E.D., down to the second order

perturbation, i.e., less than 2 ppm. This figure indicates the accuracy

of our approximation for the magnetic moment.

4). A new momentum-energy density four vector l ) is employed for the con­

venience of the calculation of its self-produced electromagnetic momentum

and energy. Therefore, the self-produced momentum-energy density four

vector in the proper frame is

0pOa "1 0p0n, (oJ· .oa) 0p
{ 1. [ 'f' + - ]} = -_[ {Oa 1." 0 n,} + {O 1."2C ' - C -2- 2c 2c' _ 'f' ,

where 0p, OJ, 0<1>, and °a are the Maxwell-Lorentz charge and current den­

sities, and electric and vector potentials, respectively. A·self-factor

1/2 has been introduced and, the imaginary number expression is used

here for the four space, and i is the i for this purpose 4). The con­

crete representation of Eq. (2-5) will be shown soon.

5). VR is electromagnetically stable. In the Maxwell-Lorentz electro­

magnetism, the Lorentz electric force of repulsion is almost exactly can­

celled by the Lorentz magnetic force of attraction and the magnitude of

the next term is extremely small, such as 10-365 of the main term.
-43Since the gravitational force expected is quite large, such as 10 of

the main term, we expect that the model is stable in terms of general

relativity.

6). The model keeps a quantized flux, hc/e, which is twice oj the flux­

oid of superconducting circuits.

In t~e new frame of physics, since the quantal equations are dire­

ctly derivable from the classical equations, it is important to obtain

the self-consistent detailed frame of classical physics.

In Fig. 1, we show the relativistic geometry for the numerical cal­

culations. The coordinate system, OK, is an instantaneous proper frame
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Rigorous Deduction of the Dynamical Equations ...

of VR, which is moving with the velocity V and has its origin at the

center of VR. K is the fixed original laboratory frame and *K is an

instantaneous laboratory frame for which the Lorentz transformation bet­

ween oK and *K does not need translational adjustment. Although the VR

may make precessional motion, the velocity, °u = Ow x Or (Ow = IYI °H) ,

expected is in the range of

(2-6)

for the magnetic field °H of l03~50e. Therefore, although this veloci­

ty itself has to be taken into account, since (Ou/c) ~ 3 x lO-(ll~9), we

can put

(2-7)

so that no general relativistic consideration will be made.

The four currents and four potentials in OK are l )

(2-8 )

(2-9 )

2] °v
c

= 2 0U 1 {o' . ° }
(-e) M,O ope J,.!.c p (2-l0)

and, in K, they are

{j, .!.cp} = {pv{r), .!.cp} = {OJ.!. + YVe:i 1l + °pV), Yv{Op + °j'2V)} (2-11)
c

(2-12)

YV = l;lli - (V/c)2

Here, vR(Or) is the velocity of the charge in the rotating frame ~, in

which VR is at rest. For oK, v R is transformed by the Lorentz t-rans­

formation and e is the angle between Ow and the magnetic moment axis of

VR. In the m~jor part of the calculations, we assume VR rigid. The

reason will be explained in §6, where non-rigid VR will be introduced.

It is noted that °a(r) has been derived to be parallel to the current

°j(r). It is further noted that, in K , the self-produced momentum­

energy density four vector of Eq. (2-5) becomes
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(2-13)

Here, we have defined a pseudo vector potential four vector {b~}, and

momentum-energy density four vector {q~} , for the convenience of the

following analyses. {q~} becomes the total momentum energy four vector

of the electron, {p~}, when integrated by the proper volume element dOVe

We have introduced the Minkowski notation. The four coordinates of the

charge element are indicated by x~, and those of the center of VR by XV.
They will be explained hereafter.

§3. Refined physico-mathematicl frame for the covariant application of

the principle of least action to VR

We believe that the physico-mathematical structure of the covariant

variation problem, which is crucial for the real application of the

principle of least action to VR has not been well-understood5,6.7~There­

fore, we begin with the explanation of a few general characters of the

problem.

Let us take the orbital motion of a point charge electron as the

example. The action integral is

I
__ Jworld Point (2)L ds

(3-1)
World Point (1) s c

Here, ds/c = dT = y~ldt is the proper time, and Ls is the covariant Lag­

rangian, which is a Lorentz scalar having the dimension of energy. Ac­

cording to the guiding principle of the new frame, L is to be chosens
so as to transit directly to the popular non-covariant Lagrangian Lt
by?)

(3-2 )

As the real examples of L , we consider _omc 2 and _omc 2 qA~~ i.
s . ~.

e., the most simple Lagrangian for the free electron, and that ln the

electromagnetic fields, A~(x(J}. Here, the four coordinates,x~ , indi­

cate the location of tbe center of the electron. Now, in the covariant

variation problem, presence of the relativistic constraints is essenti­

al. We propose that the Lagrangian.mult~pliermethodismost appropri­

ate for this purposeS), because, first, by this method, we can make the
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Rigorous Deduction of the Dynamical Equations ...

variation free, and, second, since the original Lagrangian itself has

not been given apriori, by manipulating the Lagrangian multiplier term

adequately, we can choose the most appropriate Lagrangian, L , which. s
can make the amount of necessary brain work minimum. For the analysis

of VR, since there are quite a few terms and constraints, simplification

is a crucial factor.

Then, our initial Lagrangian L transit to L with the Lagrangians s
mUltiplier term7 ) ,

= L s + 1A(~~
2 11

- 1). (3-3)

The variation of the action is

(2) f(2)
oI = f oL ds + L 0 (ds)

(1) 5 c (1) s c

Therefore,

(3-4 )

(3-5 )

oI = I(2) [aLs ox + aLs o~ + L i"ll oi' ] ds
(1) ax II a~ II s 11 c

11 II

f
(2)·d aLs - . • [aLs d (aLs • d

= {ds [-::: ox + Lsxllox,,] + ds ---::L + L xlI)] ox }~ • (3-6)
'I) aJ{ II ... ax ax s 11 c
\ II II II

Then, adopting the postulates of the principle of least action, we get

the EUler-Lagrange equation of motion as

d [ - ':"'11
aLs aL

- -L x -.-] + s = 0ds .s ax axlIII

(3-7 )

aL
lAi-11 + s = 0

Inserting Eq. (3-3) into

- i i"11 - L i"11
s 5

Eq. (3-7), we have

aL aL
~] + S = 0
ax ax

II 11
d aLs ..
ds (-:::-) 1 AX1l

ax
II

ax
II

(3-8)

(3-9)

For lA , by multiplying x
II

• • d':'" aLs
lA = -L ds(xll~)

s. "'ax
11

Therefore,

, we get

•• aL . aLs
+x~+x--=

ll~ llax
11 II

d . aL- s-(x -)ds 11':"
ax

11

(3-10)

-7-
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so that the Euler-Lagrange equat;on of motion becomes

d aL. . aL aL
ds[(-Ls - C + s x

A
) XlJ -~] + s = 0 (3-12)

ax, ax ax
1\ 1.1 1.1

Brehrne has shown7 ) that the exact solution of the least action from L
t

of Eq. (3-2) ~equests C = 0 in Eqs. (3-11) and (3-12). There is a very

subtle point in physical mathematics. If the original Ls is replaced

with L ' = L + C , then, Brehme's analysis has shown that Eq. (3-12) iss s
a consistent equation for this case. Therefore, mathematically, Eqs. (

3-12), (3-8) and (3-7) has no inconsistency, so that C is undetermined

fram these equations alone. Physically, however, C'is an absolute Lo­

rentz scalar having the dimension of energy, which should be represent­

ed solely by Ls ' xA and ~A in not very unusual form. The only possible

representation that we can conclude is

C = 0 (3-13)

Therefore, C = 0 is not a mathematical conclusion but a physical conclu­

sion, supported perfectly by the Brehme's analysis for L
t

.

Now, it is well-known that correct kinematical equation of Eq.(3­

12) is obtainable by neglecting the last term of Eq. (3-4). This is be­

cause, if we assume that d[ox(s)lJ]/ds is so small that each short seg­

ment of the route, dslc or ds'lc , can be regarded as a straight line,

then, dslc and dsllc have no difference within the first order in oxlJ ,

because they are the two geodesic lines just mutually displaced. There­

fore, in this condition, ds l ~ ds in the final variation, so that this

variational calculation should afford at least necessary conditions. In

this case, we haveS)

aLI aL'
+ [_s _ ~(~)] ox }dSax ds a':" . lJ c

1.1 xlJ

A • •
L~ = Ls + .!y-(xlJX

lJ
- 1)

0 1 I = ~2) oL I ds = ~2){ ~(a~sOX )
J(l) s c J(l) ds axlJ 1.1

aL' aLIs d . s
ds(-:::-) = 0

aXlJ

so that we getS)

aLs = 0

(3-14)

(3-15)

(3-16)

(3-17)

1 A I C (3-18)

Here, again we have the delicate problem of the integral constant C

In this case, different from Eq.(3-8), the L in Eq.(3-16) seems to ac­s
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Rigorous Deduction of the Dynamical Equations ...

cept any additional constant, without spoiling the equation. This dif­

ference, however, is not essential, because we can get the correct equ­

ation, if we put C = 0 in Eq.(3-18) from the similar physical conside­

rations. In other words, the two variational procedures give essentially

the same correct equation of motion, if we pu t the' integral constant

C = o. We must be careful in this case, because, different from Eq.

(3~11), if Ls has a constant term, it will be dropped in Eqs. (3-16) and

(3-17), so that the integral constant C in Eq. (3-18) is an additional

constant than this intrinsic constant term of Ls . Since the second

method is simpler, we shall employ this form of variation extensively in

this paper, so that the superscript, " , .. will be omitted hereafter.

(3-19)
2

Now, in Eq. (3-14), if we use L' as the original L in such a way ass s
dLs .=...

we get easily

(3-20)

so that the Lagrangian multiplier term becomes a dummy term, while keep­
. 2

ing the variation still free. When the original L = -omc , we gets
the new L ass

o 2. •
L

s
= - me (xlJx + 1)

2 lJ
(3-21)

We regard that this modified expression is important for the covariant

Lagrangian analyses. In addition to the essential reduction of the ef­

fect of the ~agrangian multiplier term, Eq. (3-21) allows to have a sim­

ple physical understanding that the mechanical momentum, plJ , can be de­

rived directly as

plJ = (3 ...22)

which obviously originates from the fact of Eq. (3-20) .

In the process of the investigation for the most appropriate Lag­

rangian to VR, Eq. (3-22) had to be used as a guide line for assuring the

right track of the trial. Therefore, we propose that the form of Ls 'of

Eq. (3-21) is essentially important for the research as well as for the

final frame. It is noted that, because of Eq. (3-16), _omc 2;2 in Eq. (3­

21) looks to have no meaning at the initial stage of the anlysis, how­

ever, as have been explained in detail, it had a serious meaning in Eq.

(3-18), but, adopting the present frame, again, it becomes not important

, because lA' of Eq. (3-18), as a whole, becomes zero, at least for this
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(3-23)

constant. It is further noted that the situation is more complicated in

the actual analysis of VR, but, according to the physical reasons exp­

lained, we put mostly the integral constant as zero and look for whether

the solution is in agreement with the experiences or not. If the result

is in agreement with the experiences, we shall not argue further about

its mathematical reasoning.

By accepting these frames, now, we have justified to make most of

the variation free, regardless of whether constraints are there or

not. If the constraints are present, we have to add the Lagrangian

multiplier terms, but they might be dummy terms, or, at least, we look

for the Lagrangian, L , for which the effect of the Lagrangian multi-s
plier terms may become minimum, under the free variation procedure.

We may add that, when the original Ls = _omc
2

- qA~~~ , the new

Lagrangian, Ls ' becomes

°mc2 ~~~ .
L s = - ~(x x~ + l) - qA~X~

which gives

° 2. •
1A'"= mc (xllx - l) = 0

2 ~
(3-24)

It is noted that, by accepting this principle, we have to distin­

guish clearly between the algebraical expressions and their constrained

values. Even if the constrained value is zero, if the zero is in the

first order, it can have a great significance in its variation. This

principle also requests to disregard the distinction between the terms

in the original Lagrangian and the terms coming from the Lagrang~an mul­

tiplier terms. We have to remark that no one knows the original Lagran­

gian of YR. We are in a position to look for the best Lagrangian for

our purpose, and, in order to make the analysis simpler, we have set up

the explained prescription of the mathematical procedure. According to

the principle of the new frame in physics, the analytical continuation

to the established classical physics should be strictly maintained, but,

besides this, we don't know .the results, because they are in an unknown

field where no well-established investigation has been present. It will

be mentioned in advance, that, actually, we have obtained our best Lag­

rangian, Ls ' at the analytical extension of the Lagrangian, Ls ' of

Eq. (3-23) .

Let us ~tart the ~xplanation of the proposed Lagrangian of YR. We

focus our attention to an invariant part of the electric charge

°p(a)dOV(a) (3-25)

with its four coordinates x Ca ) , where (a) indicates a specific portion
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Rigorous Deduction of the Dynamical Equations ...

of the charget5 ) •

The original action integral that we propose is

f
wor ld Point (2)

I = L'
World Point (lJ s

ds
c = rfJJ ( - j ::~ -

0.)
'lJ

= ~:JJJ (- CX2 q~ - (3-26)

in which jlJ and AlJ are the four currents and the externally given four

potentials, respectively, so that the last term indicates the well-known

mutual interaction between VR and the external electromagnetic fields.

Here, L' indicates the effective parts of L . without the additive cons-
s 2 s

tant of -orne /2 of Eg.(3-23) and the Lagrangian multiplier terms. We

shall show soon that the orbital self-energy part of Eg.( 3-26) is iden-
2 ••

tical to -(Orne /2)~x of Eg. (3-23). Since jlJdOV can be understood as
lJ

the integral can be rewritten as

. lJ
(x (ex)

dX~a)
= ds ) (3-27)

O. (3-29)

Here, x~a) (s) and x~a) (s) represent the trajectory of °p(a)doV(a)' and

blJ[x~S} (s), ~~(3) (s); x~a) (s)] i~dicates that blJ at x~a) (s) is a functio­

nal of the whole functions of xeS) (s) 's and X1S) (s) 's. It is to be no­

ted that, by assumption, the velocity of °pdoV is always c , or, the

light velocity. Therefore,

. lJ { ° v(~) V) ° (a) ° (a)
x - y (1 + ~ + Y (_VII + V_)}

( ~, - V 2'wee Vee

By using Eg. (3-28), the invariant four space integration form of Eg. (3­

26) becomes implicit, but, this form is necessary in order to trace

~a) (s) in the integral.

By assumption, at points (1) and (2), x~) 's and x~) 's are all fixed.

Assuming that the. solution x~a)' s for the least action integral have

been obtained, the general expression of x~a) (s) after the variation is

~---------------------------------------

t 6)Here we refer the work by Barut • Although it was not possible to understand

the details of his pioneering analyses, the notation (a) comes from this earlier work.
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X I lJ (s ') = x lJ (s) + £lJ v (s) x( 0) (s) + 0x lJ (s)
(0) (0) V

(3 -30)

where £lJv(s) defines general Lorentz transformation including pure rota­

tion. Putting the coordinates of the center.of VR as x lJ , we get

(3-31)

so that
x('J (s') = x lJ (s) + <5xlJ (s) + llXr~ (s) + Ollxta.) (s)

<5xll (s ) = 6x lJ (s) + £lJ v (s )X (s )
v

6llX( 0) (s) = £lJ v (s) llX~~ (s) (£ lJ v = _ £V lJ )

(3-32)

(3-33)

(3-34)

where llX~a.) (s) '5 are the radial four vectors of VR. <5X"lJ (s) and £lJv(s)

are the proposed two kinds of variations. Since £lJv(s) includes Lorentz

boosts 8) which are related to o~lJ(s), £lJv(s) and oxlJ(s) are not cOmp­

letely independent.

Since we have

*X"lJ = {yvcOt, YvVOt }

i lJ
= {Yv ' YV ~ }

°r(~, .l. + Y °r(a)}V II

° (a)
Y ~ }

V c

,(3-35)

(3-36)

and each point (a) moves with the velocity of light, presence of the

following five constraints is obvious for the variation of oxlJ(s) and
£lJ V (s) •

(3 ) ~lJ 6·x(a) = 0 ,
}lJ (3-37)

ix lJ ix(a) = -1(a) lJ

::-JJ ·la) .LlJ •. (a)
'I 0 (3-38)

x II lJ = - x llx
lJ

= 0 ,
} (3-39)

i"lJ i"lJ =- 1 ,

llx lJ llx( B) =
(a) lJ

(1)

(4)

with

i"lJ~ = 0 ~lJ lJ.x(a) = - ~lJ ll·x(a) = 0
lJ lJ lJ'

lJ.x lJ lJ.;.(a) = 0 lJ.~ lJ lJ.x( B) + lJ.x lJ lJ.x( B)
(a) lJ (a) lJ (a) lJ

llx lJ lx(a.) = - lJ."x lJ ll"x(a) = 1
(a) lJ (a) lJ

Constraints (2) - (5) are special for VR, the presence of which can ea­

sily be checked in OK by using Eqs. (3-35) and (3-36). The variation of
constraint (2) gives

o = .r~ "x(a) + ~lJ£ llx v = (o~lJ + £VlJ~) ll)a)
u u.j.I lJ v (a) v lJ •

Since fjx(a) has all the necessary freedom, Eq. (3-40) requests
lJ

(3 -40)

~lJox =- (3-41)
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Rigorous Deduction of the Dynamical Equations ...

indicating the presence of stron~ correlation8 ) between the four dimen­

sional rotational variation, £~v, and the Lorentz boosts, o~. Constra­

int (3) gives the same relation. Constraint (3) and (5) are relevant to

the situation that each point (a) moves with the velocity of light, i.

e. ,

(3-42)

Constraint (4) indicates the mutual angle o~(aB) between (a) and (6) un­

changed. In the following calculations, we are careful to place exces­

sive constraints than necessary, because, since our variation calcula­

tion is very delicate, we may get erroneous conclusion easily, if logi­

cally complicated and confused. It is noted that, except constraints

(1), (2) and (3), most of other constraints will be not used as the Lag­

rangian multiplier term, because our variation of oxP(s) and £~v(s) will

not violate these constraints.

Let us explain the mathematical implication of the self term of our

Lagrangian shortly. Since

(3-43)

( 3-44)

we have

cx~ q(a) 2 2
( ) 1 ° 2 • 11 • °mc· 11 • (a) 2 ° ( )a ~ = __P_ [Omc -xt-'x + 6,xt-' AX + (Omc + ~) ;'{l.lh. a ] .(3.:..45)
2 2 (-e) ~ T=gT-1a) Ll l.l (-g) ~

Therefore, if integrated, we have

)dOV = 1 0mc2 ':"p':"- "2 x x~

2
'I" .!. OPdoV orne . l.l • (a)
t.. 2 ( ) t::=T"g 6. X(N) L\x~(a) -e \ -l.I J u.

(3 -46)

It is noted that the sununation ttl for the term with ood number of

6.ia) or 6.·xCaJ vanishes, since it includes sino~ or eoso~ in odd pro-
~ ~

ducts, where o~ is an Euler's angle arround the ring. Mainly from this

reason, the last cross term of Eq. (3-45) has no effect in the variation

procedure, as we have indicated in the second equation of (3-46), being

an interesti~g finding for the unnecessity of the cross term in this

covariant Lagrangian. Eq. (3-46) shows clearly that our Lagrangian has

the structure of" Eq. (3-21) in its main term. In order to match the re-.. ... . ( )
quirement from Eq. (3-21), we replace iPx and 6.x(~)6.Xa of Eq. (3-46) with

• • • ::<) ~ u P
(XVx + 1) and (6.XV( )6.X U + 1) respectively, from now. Then, from Eq. (3-

~ a ~ ,
46), our L for the orbital motion becomes identical to Eq. (3~23), giv-_ s

-13-



ing the value of -omc 2 , which has been well established for the Lagran­

gian of the orbital motion.

§4. Lorentz invariant derivation of the kinematical equations of the

electron by the new frame

Since we have Eq.(3-4l), oX~'s are dependent on£~v(s). Further­

more, the equation which determines the orbital motion of VR is several

orders of magnitude larger than that for the precessional motion of the

spin of VR. Therefore, we shall solve the least action problem first

for the precessional motion, i.e., for EPV,S, accurately with taking

into account Eq.(3-4l) directly. Then, after that, by using this solu­

tion, the Lagrangian multiplier method will "be adopted to obtain the

equation for the orbital motion in the necessary accuracy. As shown in

§5, it has turned out that the Lagrangian Ls ' thus obtained, is also

effective for the precessional motion.
Now, in Eqs. (3-32), (3-33) and (3-34), we have six E~v (s) = - E~V (s)

, which can be all independent at least 10callyS}. From Eq. (3-41), how­

ever, o~ is a function of E~V, so that ox~ must be a functional of

E~V(S}. Since VR starts at world point (l) and arrives at world point

(2) without any change, E~v(S) can not be completely indep~ndent. We

have developed the mathematically formal variation as

and, as a refined Ls ' we have

L = E (!. °P(a)dOV(a}[omc2(~i'
s (a) 2 e 11

2
+ 1) + °mc (6~Y 6x(a)-r=gr (a) ~

ds
c (4-l)

Since

aLs
a (6x(a) }

~

-14-
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Rigorous Deduction of the Dynamical Equations ...

(4-4)

(4-5 )

aLs--.-ax
J.l

we get

2·= -orne ~

from Eq. (4-1)

(4-6)

Here,

v
AV,J.l _ AJ.l,V

= F
JlV AV,J.l= aA (a)

(a) (a) (a) (ex) ax (a)
Jl

bx[J.l v] .J.l v • v J.l (4-8 )
bx (a) = bx (a) bx (a) - bx (a) bx (a)(a)

It is noted that J5(aLs/axJl)dS has a freedom of a constant term, w~ich
will be left undetermined, for the sake of convenience.

Now, let us introduce the definitions of the angular momentum and

magnetic moment of VR briefly. According to the fundamental assumption

of VR l ), the original definition of the angular momentum of VR is

= L
(a)

(4-9)

From constraints (2) and (3) of Eqs. (3-37), it will be evident that

= -
V··

SJ.l X­
v (4-10)

For the magnetic moment, the definition is definite by electromagnetism,

as

=
(4-11)

Therefore, we get
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= ge
2°mc

= (4-12)

We should note that

M12 = _ M
z

S12 = - S
z (4-13)

(4-14)

and this definition is in conformity with the relation B = H ;. M and
E = D - P

9)
Here, we have to note that there are another non-antisym-.

metric tensors *Mll v and *SlJ V difined by

(~ op(~ dOV tx ) 6X(~)6X(~ = 2~:c*sllV •

It is easily shown by direct calculation that, when VR is at rest, *~v

= MlJV , but when it is precessing, *~v f ~v in the order of (ORow/c)
-(9'\,11)

sin°e , or, 10 , and this small difference becomes the principal

components in a few cases, such as cSllV or ~V~A For instance,

_*MVA;Z = 0
A (4-15)

In the new frame of physics, when quantized, since the c-number ex­

pression of Mll v and *MlJ V or SllV and *SllV should be regarded as a

single operator Mll V or SlJ V , this difference creates a delicate stru­

cture for the quantization. From the procedure of the least action pri­

nciple of Eq. (4-7), [lJv] will appear, but not [All] nor [AV]. This will

be one of the essential defect of the least ~~tion principle, which has

to be improved for the quantization. Of course the quantization should

be made so as to describe the experimental results correctly. Fortuna­

tely, however, the quantization is almost unique as we see soon.

Now, returning to Eq.{4-7), the left side is identical to csllV ,

and the last term gives the torque given by the external fields. The

first term of the right side gives a very small correction. which will

be shown soon. A possible contribution of the external vector potential

A to the SllV will be discussed in §6.

Since the analysis of Eq.(4-7) requires the knowledge of the orbi­

tal motion, we derive the kinematical equation of the orbital motion

next. For the orbital motion, we utilize the Lagrangian multiplier me­

thod. Then, we have

L
111.

(~l1~lJ E 2 II. b) ill 6x( a) E 3 II. (a)~ 6'x(a)= L + "2 - 1) + + • (4-16)s s .
(a) II b) II

There will be no doubt for 111. term. For 2Ra ) and 311.(a) we know from,

Eq. (3-40), that one of them may be sUfficient, but, since the problem is

so delicate, we have introduced two conditions initially. Then, we have

-16-



Rigorous Deduction of the Dynamical Equations ...

from the initial equations of Eq. t4~1) ,

(4-17)

~
Here, we have introduced the definition of orbital momentum~ p , ac-

cording to the usual definition. Then, utilizing Eqs.(4-6) and (4-5),

we have

d [(0 2 A)':"'~ds mc - 1 X

(4-18)

Therefore, we get

(4-19)

Replacing Eq. (4-19) in Eq. (4-7), we get

ddS(cs llV ) = {Ef A(a)Llx[~ + A(a)Ll~[~)}i"V]
2 (a) 3 (a)

(a

+ EOp dOV (A(a) [~ - A[~' )(i'A
(a) (a) (a) A, .,a) A (4-20)

It is noted that, since the left side of Eq. (4-19) is almost zero in

the currently accepted equations of the electron, the terms with lA,
2A(a) and 3A(a) are expected to be very small, such as 10-(9rv ll) ,as

2·
compared with the main term, °mc~. This result is anticipated, be-

cause, as explained in §3, we have set up our frame in such a direc­

t.ion.

Multiplying x to Eq.(4-20), we have
~

= -{E ( A(a) Ll v + A(a) t. v )}
2 x~) 3 x~)

(a)

+ E °p . dO V i' (~a) II ­
(a) (a) (a) II A,

(4-21)

Therefore, we get

• J.l v {.. A [~ • (a) C1 a • A [~} ':'v ]
C S = xAcS .+ (Ea.) ° Pea) d °V(a) x a (AA - ~a) A ) llx(a) l\ XCa) x

+ E ° P d °V (A(a) [p - A~~) , \ ) (i'A + Ll·X(~» LlX(~]) . (4-22)
(a) (a) (a) A,.# \ 1\

From Eq. (4-21), we have
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L ( ",(CJ.) lY, v + ",(CJ.) lY,'XV )
2 X(CJ.) 3 (CJ.)

(CJ.)

• (4-23)

Therefore,.we get

Let us approxi­

Then we have

l (4-24 )

(CJ.) V (CJ.) • v
L 2 A lY,x(CJ.) + L 3'" lY,x(CJ.)
(CJ.) (CJ.)

Therefore, we get finally

(4-25)

(4-26)

where we have expanded the torque term, i.e., the last term of Eq. (4-22),
ov

and defined the electric quadrupole moment tensor of VR, Q , as

(4-28)~ = 0 I or v = 0 I

Qav = L 0p(CJ.)dOV(a)lY,X~)lY,x(~) (4-27)
(CJ.)

When we put *SA[~ = SA[~, *MA[V = MA[V , Eq. (4-26) is identical to

the BMT equationlO ), except the last term. The first term of the last

equation of Eq. (4-26) includes the Thomas precession as a main compo­

nent, but it includes also the higher order torque term with the same

magnitude. In this covariant least action analysis, it is not possible

to get the Thomas precession term isolately. (If it could, the expres­

sion must be quite a complicated tensor transformationll ).) In addi­

tion, as shown in the middle equation, this term is almost cancelled by

another higher order torque term, to the factor of (1 + g/2) '\" -1. 5 x

10-3 . These terms are directly related to the spin-orbit coupling, in

which we believe that there has been an incomplete understanding. The

structure will be analyzed in detail in §5.

Let us clarify the physical meaning of the additional last term.

Defining the space coordinate (~= 1,2,3) by k, i and m, we get in OK ,
oQOV = 0Q~O = 0 , oQki'= 0 when k ~ i , and o~ = 0 , so that

O(?F[~" Qav]) = 0
A,a
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Rigorous Deduction of the Dynamical Equations ...

(4-29)

1J=1,\I=2,

Therefore, if 0Q22 = oQll , this indicates

= oQkk (_ V x 0E) = OQkk(.!. a08 )
z c at z

(4-30)

Eq. (4-30) indicates that, when un changes, VR, or, the finite size ele­

ctron must experience a circling electric field, which should introduce

a torque to the spin angular momentum of YR. Although the expected mag­

nitude is very small, further beyond the limit of the present experimen­

tal technique in the usual situation, this is a new effect predicted by

the new frame, which is not present in the old frame where the size" of

the electron is assumed to be less than 10-17 m •

For the orbital motion, Eq.(4-18) becomes

( 0 2 A)';{.I A·:7IJ ~ ° dOV (IJ, (a)lJ) (-=->.. A· >.. )
mc - 1 X - 1 X + (~) Pea) (a) 1\(0.» .. - A>.., x +0 ~a)

d {".. >"IJ • a >"IJI
- ds X>.. cS + 2~:cXaF >.. *S } = 0 (4-31)

Multiplying -=-x , we get
IJ

(4-32)

lA = ~ (AIJ , - A>.. IJ )*M>..a = _~ A IJ M>..a = Jad
IJ >..a a IJ >", a - dsA>..,a

= .!MAa ~ ( Aa ,>.. - A>.. ~a ) = ~( .!MAaF) - 1 M>..a F .2 ds ds 2>..a "2" Aa

Since we know in oK from Eq. (4-26)

we have

(4-33)

(4-34)

2
= + 11· 8 + d· E = - b.mc (4-35)

Thence, finally we get the orbital equation as

(-e)~AF, IJ _ MAaF IJ,
1\ >.. a

(4-36)

The derived equations of Eqs. (4-26) and (4-36) are identical to the

accepted equations in the usual accuracy, but, contain additional terms

in the higher order accuracy. Eq. (4-36) indicates the presence of addi-
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tional term, (2/g + l)MA~F, i a , which is about 10-3 smaller than the
• / 1\ a Aa .:.~ .

smallest term, l.e., -(1 2)M FAOx , ln the usual accuracy. We may call
it as "anomalous orbital momentum", which may be checked in future. Our

Lagrangian for the orbital motion is Ls with lA and 2A(a) terms. With Ls
, we can make ~ and 6X~) independent for the variation and constraints

(1), (2) and (3) of Eqs. (3-37) should be placed after the variation.

The derived representations of lA and 2A(a) can be safely placed in Ls '

because they have no effect for the variation procedure, owing to the

constraints imposed after the variation.

Now, we have solved the classical dynamics of VR in the necessary

accuracy. The internal structure of the results will be further discus­

sed in the next section with emphases on the detailed mechanism of the

spin-orbit coupling and the quantization.

§5. The general Lagrangian of VR, the spin-orbit coupling and the

quantization

The Lagrangian, Ls ' thus obtained is

1 2·':' ()= - - °mc (iVx + 1) t;' ° dOV (XIl + A·X~ ) 1\a
2 ~ - tal p(a) (a) l.1 (a) ~

_ L 1:.°p(a) d °V(a)

(a) 2 (-e)

(- (!g) + 1 \~) (0 Pea) d °V(a) i"°FA06·X(~) 6 x(~) )x~ (5-1)

We should note that the magnetic self-energy term in this expression

looks just like as one Lagrangian multiplier term. This mathematical

structure may be utilized in general for representing hidden vari~les

in a relativistic analysis of unknown composite particles, such as the

nuclei. The variational equations are

= 0 (5-2)

cp~ = ( - aEs

ax
11

(5-3 )

d r aLs ) aLs
dst-(~) = - -- (5-4 )

axax~
11

d [ {' aLSI Vl} ] (- aL ~ aL
6xv ]s . v] s

ds (;) \ - a6·x (a) 6x Ca) = E -- 6x L (5-5)
(0) a6x Ca) b) (ex) a6X Ca) b)

[11 [~ [11
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Eq. (5-4) is identical to Eq. (4-17) and becomes Eg. (4-36) finally, Eq. (5­

5) leads to Eq.(4-20) and becomes Eg. (4-26).

Since VR has an essentially relativistic special structure, usual

conventional way to construct Hamiltonian, such as

L
t

:: L y -1
s V Pt; = (5-6)

(5-7 )

can not work. The constant of the motion, however, is obtainable from

Eqs.(5-3), (5-4) and (4-18), such as

d [ 0] 0 dO (-=- A • A ) d A(a) (58)
ds cp = (~) Pea) V(a) x + li x(a) Cd t A -

o
Therefore, if AA is not time dependent, we have a constant, cp , hav-

ing the dimension of energy,

0 °mc 2
- ll·R d·E (~

d· (E + ~ x H)- (-e)4> 1) ccp = + + + jl 2
)1

(V 2
g

(~)- -) -
c c

where

d V=. - x IIc

(5-9)

( 5 .... 10)

is exactly the relativistically induced electric dipole moment of VR. t

Since

cp =(Omc
2

_ p·R - d.E)~ + L ° f:1 d °V A(a)
2 b) b) ~)/1 - (y)

v c

(.?
1

(~.E)d + lJ x
V HV+ + 1)/1

(E + - x (5-11)g
(y) 2

c
- c

it is not difficult to eliminate the factor 1~/1 - (v/c)2 from Eq.(5­

9). Writing cpO = E I the result is

t (ll. -p)

(ll • H + 2d·H)Omc

v 0)-- x Y IIc V..L

-21-
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In Eq. (5-12), the term with - (d·E)" represents the spin-orbit coupling.

In the non-relativistic approximation, if V/c« 1 , (cp) 2 « 0m2c 4 , we

have - d· E for this coupling, but, in the Dirac Hamiltonian, this term

has a factor 1/2. We have concluded that the absence of the factor 1/2

is due in ou~ frame, and, here, we found one of the typical interfacial

structure between the c-number equation of the new frame and the Dirac

Hamiltonian. Since we believe that the physical understanding of the

spin-orbit coupling in the current physics is incomplete, we shall ana­

lyze the involved structure in detail by means of the new frame, here­

after.
ov

Neglecting the last Q term, Eq. (4-26) can be rewritten as

Assuming *M = M , Eq.(5-l3) can be rewritten as

(5-13)

·j.lV
cS = . (5-14)

Here, different expression is used for the first term, and, the

last torque term is decomposed into time related component and purely

spacial component. As we show soon, each term of the .r ight side of Eq.

(5-14) has nearly the same order of magnitude. Therefore, the first and

second terms cancel mutually, reducing the magnitude to (2/g + 1) ~ 1.5
-3

x 10 ,which can be neglected. In order to make clear the structure

of this term, however, we analyze this term briefly. Defining the usual

vectors Sand ll, as

j.l = ~ S -(5-15)
2°mc '

we have

_2;c PO,M A[2il ] = _2. [y. x (E x ll) + (Y.'1I)y2{(~)2E.L + V x H 1]
-g () 1\ -g C c'" Vee ! z

2 r 21 V 21 V V
= - _g LYV 2"1l x (E x c) - YV 2" [ (c x j.l) x E.l.. + C x (ll x E.l..) ]

1 V V 2V V]-2 [«3 xll) x Ell + eX (ll x Ell)] + YV(c·ll)c xH z .(5-16)

Let us take a 3d electron, and assume that the electron is making a cir-

°cular motion at about 0.4 A from the nucleus whose effective charge is

+Z'e ~ 20e. Then the velocity should be 8 x l06 ms-l with V/c'~ 0.3,

so that Vic' « 1 can no~ be assumed. In this specific situation, the

third and forth terms of the last equation of Eq.(5-l6) are zero. As we

show soon that, although the second term has the same magnitude with the

first term, it gives only a ripple motion, whose integrated effect is

neglegible. Therefore, Eg. (5-16) indicates that the effect of the Tho-
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Rigorous Deduction of the Dynamical Equations ...

mas precession in this case is equivalent to the presence of a magnetic

fi.ld~ HT ' of

2
2 YV V 2 Yv

H'r =-{-g)2 (Ex c) =-(_g)"T HI (5-l7)

Here, HI = y" E x (Vic) is the magnetic field as seen by the electron,

or, in oK. We can see that the Thomas precession just reduces the ef­

fect of HI into approximately half.

Now, in Eq. (5-14), nowever, this term is just cancelled by the se­

cond term, or, the higher order torque term and the remaining equation

is

cS = (~ x lJ) x E + lJ x. H
c

= lJ x (~E x ~ + H) + i[(~ x lJ) x E + ~ x (lJ x E) ] (5-l8)

As we see, again the torque can be decomposed into essentially the same

components with Eq. (5-l6) with different sign.

Let us make a numerical calculation, 'in which the nucleus is locat­

ed at the origin and the electron is making a circular motion in x-y

plane with the angle ~ = W bt. We haveor

V = V -sin W bt cos W bt 0 ) ,

= ,0 ,)

or or

E E cos W bt sin W bt 0 ) , H (5-l9)or or

lJ = l.l sin 8 cos 4> sin 8 sin <p cos 8 )
J

here, we have represented the spin magnetic moment, lJ, in the same

space by ll, 8, and <p. It is noted that we have to assume dl.l/dt ~'O •

Then Eq. (5-18) becomes

Orne· l.lEV .--e. lJ = 2c Sln 8 [( -sin <p I con <p , 0 ) +

(-sin{2worbt-<p), cos(2worbt-<p), 0 )]

=o:C(\.l[Sin8 (-sin<p, eos<p, 0)<1> + (cos8cos<P, eosOsin<p, -sinO )e]

+ ;1 (sin 8 cos <P , sin e sin <p, cos 8 )1 •
(5-20)

Eq. (5-20) gives

Orne d<P EV[l + eos{2w bt 2<P) ]-- dt = -e 2c or •
orne dO

- ~V sin 28 sin (2w b t 24»-- dt = -e c or
) (5-2l)

In Eqs. (5-20) and (5-21), we can see the real form of the ripple torque.

Again, using the aforementioned numeriealfigures for the 3d electron,

we get
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(5-22)

where from Eq. (5-21), w~

of the spin. Therefore,

21), we get

represents the averaged precessional frequency

we can assume W b» W , so that from Eq.(5-or ~

w
4> 'V W t + 2 ~ sin(2w b t - 24» 'V 2.4 x

~ worb or
w

8 'V 4W~ sin 28 cos (2w bt- 24» 'V 1.5 x
orb or

1014 t + 3 x 10-3sin(2wbt-2<P),
or

(5-23)
10 -3sin 28 cos (2w bt - 24» .

or
(5-24)

Therefore, the aforementioned ripple torque gives only the ripples of

0.003 radian for 4> and, 0.0015 radian for 8. This means that, since

the orbital motion is quite rapid, the ripple torque in the spin-orbit

coupling, although its magnitude is comparable with the main torque#,

has a very small effect for the integrated motion of the spin.

In conclusion, we have confirmed that only the first term of the

last equation of Eq. (5-18) is effective, and our equations describe the

spin-orbit coupling state with. the Thomas precession correctly. There­

fore, the expression of Eq~(5-12) must be correct classically. Of cour­

se, since Eqs. (5-9) and (5-12) are the relativistic expression, coming

from Eq. (4-36) of

== y ( -p • H - d· E )
V

(5-28)

there is no possibility of having the factor 1/2 there. Now, Dirac the­

ory has predicted the factor 1/2 for this coupling of -(d·E). There~

fore, we have a problem of disagreement. First, we may point out that

the Dirac electron should get the factor one, if the treatment is exten­

ded to the large scale orbital motion of the electron in macroscopic

electromagnetic fields. Second, in quantum physics and for a stationary

state, the ripple terms, such as the second term of Eq. (5-18) has to be

averaged out, as the ripple term is space dependent and, if averaged

over the orbit, the net effect becomes zero. (If averaged by ~ in the

first equation of Eq.(5-20).) There is a possibility that the effective

range of the Heisenberg uncertainty and the problem of measurement in

quantum physics, being similar to the case of the Stern-Gerlach experi­

ment23 ), may be involved, which m~y differentiate the energy of the ~r­
bital motion of a wave packet of the electron in an electromagnetic fie­

ld and that of a stationary state in an atom. In this connection, there

is a possibility that we may get. the factor 1/2, if we extend our treat­

ment to include the emission and absorption of light by the intra-atomic

electrons, and to quantize properly. Exact evaluation of the energy
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transfer by induction in this very critical situation with the Thomas

precession may present another point to be studied in future. Itispos­

sible to regard HI as being induced by the motion of the positive char­

ge of the nucleus in oK. Since oK rotates by the Thomas precession,

/I We found an essential fault in known literatures, which claims that the ripple

terms are small in their magnitudes already. In order to show the tricky structure of

the relativistic calculation. we explain this. Using Eq.(5-18) and (4-36). we have

(2.) dlJ ::: -lJ X H - (Y... x lJ) x E
-g dT c

2T = eT/omc = es/mc

V d VlJ·E = -(lJ·- x H ) - lJ·{-(-)}
c dT c

We'have an identity of

V
-·E
c

!. E-[ _! x ('i Xli)] :::!. E-[ /3211 _ (11 .y"')'i] 1 d (/32 )
2 dT c c" 2 dT .. .. c c ;::"2 dT 1l.L

2
!.2[- ddT/3 llll- /32 ddlJ

T
11 + (dlJ.'i)!+ {~. E-(!)\.! + (lJ·~)~(!)] 0

dT c c\ dT c J c edT c

Then, we get completely analytically

Then, one had concluded that, when Vic «1,

+ .![ -(lJ.! x H)! - (!.lJ)! x H + 1 dS
2

+2 c c C. c --~2 dT lJ.J..
1 - S

and dS
2

/dT

(5-26)

is not large, the last ripple

term of Eq.(5-26) is at least in the second order in 13= VIc, so that it can be neg­

lected as compared (-l/2)lJ x (E x VIc). This was a serious mistake. Assuming

v V- = .:.sJz
c c a(sin8E ,0, cos8E ) II lJ(sin 8 cos <p , .sin e sin <p, cos 8),

we show easily

~~ = v(sin 8' cos<P'. sin818in <P', cos 8 1
)

c
V cos 8 I + VI-I a sin 8 ~os <P sin 8 E . (5-27)

-1 2Therefore, (dllll /dT) contains B , so that -,(1/2) B (dllU/dT) is in the same order with

(-1/2)lJ x (E x VIc).
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which, as an average and neglecting the ripple motion, is equivalent to

the precession of ~ in a magnetic field of -(1/2)H' , so that the ~K* ,

the instantaneous proper frame which, as seen in K, has no Thomas pre­

cession, should see the nucleus moving by a half speed, V/2. There­

fore, the magnetic field ~H* will be H'/2. The new frame regards this

old picture as a 'second guessing, since the °H* will be still H'. It

prefers another old picture, in which the factor 1/2 comes from the es­

sentially quantal averaging character of the quantum state, in agreement

with the major character of the integrated classical solution.

Let us compare the Lagrangian density in the Dirac theoryl4) ,oGel
and our original Ls They are

06el
= _ ~[mc2 _ ic(-e)y)J{_~ _ (-e)A }]w

(-e) iax)J c)J
(5-29)

(5-30)

In Eqs. (5-29) and (5-30), since, in the field theory14), ic(~e)y)J repre­

sents the total electric current density(orbital plus spin currents},

the interaction terms are both

I ,)JA- - Jc )J (5~3l)

Besides this, there are many similar points. Definite difference will

be in the representation of spin. Namely the structure of spin is only

in yJ.l in the Dirac the~ry and we have a very detailed structure by ~~~)

, which is located in xJ.l, jJ.l and qJ.l in Eq.(5-30). We propose that our

Lagrangian has at least one advantage with respect to its simplicity and

its clearness in the internal structure with 9 = - 2 ( 1 + a/2rr)

The quantization of Eqs.(4-9), (4-26), and (4-36) should be made as

follows. Since it is known that the Y-matrix representation by Dirac

is the simplest covariant representation of the electron spin, we have

to take the Dirac four Schr6dinger wave functions, ~(n) and ~(n)

(n = 1, 2, 3, 4), and should follow the Dirac procedure. Then, the

orbital momentum, pJ.l or Eqs. (5-1), (5-2), and (5-3', should be replaced.

by the operator

PJ.l = _ K . a = ~ (_ a a a a)
T ax 1 cat, +ax, +ay, +az

)J
(5-32)

and, relying on the Gordon decompo~ition 9 f the yJ.l operator16 ),17),

we should regard the spin angular momentum sJ.lV (2°mc/ge)MJ.lV as an
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operator

When we neglect the higher order terms, we have

(5-33)

pll (5-34)

::1Jx· = .l--..{ _ n d _ (-e ) All} = 1
mc r dX cII mc

where P is called as the mechanical momentum.

pP (5-35)

We have to make the necessary considerations on ~ also. Of course

the operator (dA/dT) must be understood as representing the operator

h · h'd . 3)aVlng tel entlty

< dA >
dT

d
= dT < A > (5- 36)

Then, in principle, we have obtained the quantized relativistic kinema­

tical e,quations for the electron wi thg =. - 2 (l + a./21T) •

It is to be noted that most of the calculations iri. §" s 4 and 5 are

effective so far as the electron consists of persistent currents. The

special character of the VR model is only used in the numerical coeffi­

cients of Eqs. (4-9) and (4-12), where the expression of the electromag­

netic momentum of VR has to be used.

§6. Quantized magnetic flux of the electron spin

An important purpose of the new frame in physics is to present new

ideas or new concepts in physics, which may stimulate new investigations.

In this section, we continue to present a discussion along this line.

In oK, the VR model has a quantized flux 2hc/e in the absence

of external electromagnetic fields. What would happen when an external

magnetic field is present. Let us apply the same procedure as that

employed in finding the original model. Then the first question is the

amount of contribution of the externally applied vector potential to the

self angular momentum of YR.

First, we should note that this contribution does not affect the

kinematical equation of Eq. (4-7). Because we have

2
d (0 0 {o mc ". [ll [ II } v])

ds (~) P (a) d V(a) ---ge- L1 xU~) + KA(a) IJ.x{a)

d (I: 0 d 0 V {o mc 2 IJ.. [1l1J. v]})
ds . p(a) (a) -ge- x(a) x(a) ,
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d ° 2- (r ° d °V 1 mc- ds p{a) (a) l-ge-
(a)

(6-1)

in which we have neglected the quadrupole interaction term. (see Eqs. (4­

9)-(4-15». This means that the additional torque which should be add­

ed to the ri~ht side equation of Eq. (4-7) is really neg1egible.

We found that the most attractive physical structure of the system

can be obtained by assuming the contribution as

(6-2)

The basis of the justification is that the angular momentum of VR

is electromagnetic and, for the internal degree of freedom, °A(a) and

°a(a) can not be distinguished. The self factor 1/2 is already used

in °a(a) with justification and this is an extension. As shown in

Eq.(2-9), since the situation is really relativistic, similarly to the

Thomas factor, there is no apriori reason to adopt the factor 1, which

has been effective in the orbital motion, as represented in Eq. (4-18) ,

having justification mathematicallyl) and verified experimentally .•

Then, the angular momentum quantization becomes

(6-3 )

From Eq.(6-3), a calculation which uses Eq.(2-10) gives

((>-4 )

Next, as shown in Appendix B, in the new frame 3 ), the Zeeman energy

-(O~2.oHl) is regarded as the effective Hamiltonian of the total

system, such as

(6-5)

Here subscripts 1 and ~refer to the source and VR3 ). °G
l

and °G
2

are

the self energies of the source of the magnetic field, °H l , and the

magnetic moment, o~2 ' respectively, and DUm is the total magnetic field

energy. COGl and oOG
2
-are introduced through the energy transfer by

induction. 0* indicates that the variation should be with respect ~o

the mutual configuration. Details are shown in Appendix B. From Eq.

(B7) of the same appendix, we expect that the self energy of VR has to

experience
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Then, from Eqs. (2-2), (2-3) and (2 L IO), we get

e
2

[lnB o R _ 1]

4n 2°ROn
(6 -7)

Eqs. (6-4) and (6-7) are enough to determine oR and on, for the new sit­

uation, or, under the applied magnetic field, °H l . Striking result is

that

(6-8 )

(&-9 )

so that only on will experience a change

(6 -10)

The 0<1> due
a

a.
2n

of l03'V50e •

a.
1 + "2"7f

for the oIl
1

The magnetic flux in this case has two contributions.

to the vector potential °a is, from Eq. (2-10)

(6-11)

so that

which is just cancelled by the 0°<1> cue to °H l of

2nOR °H cos e
1

(6 -13)

Therefore, the magnetic flux quantization is strictlyrnaintained and VR

behaves like as a superconductqr, rejecting the penetration of the ex­

ternal magnetic field completely, by means of the induced diamagnetic

change of the current loop. The result is obvious since the flux 0<1>

(6-14)

where dO! is the line element of the loop, whereas Eq. (6-3) can be

transformed to

(6-15 )

in whichoA is the line density oft~e charge. Since, in Eq. (6-15},

the ratio of the components of (Oa + °A)~ i.e., ofyertical to of paral­

lel against dO!, is very small, and only the square of the ratio has an
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effect, the vertical component hers no contribution in Eq. (6-15). Then

Eqs. (6-14) and (6-15) become identical,. indicating the coexistence of

angular momentum and magnetic flux quantizations.

Since we have the Meissner effect for the orbital diamagnetism

and, here, we have the same for the spinning motion of the electron,

we may conclode that perfect diamagnetism is a virtue of any physical

system with persistent currents, so far as the system is large enough or

the. currents are strong enough to realize it. This is a new concept

obtained by the new frame. If the system is not large enough nor the

current is not strong enough, the diamagnetism may be incomplete, such

as the case of the Larmor diamagnetism of atoms, ions, and molecules.

The concept may have an application in the structure of nuclei or in

astronomical entities.

We have tried to find out the semi-classical derivation of the

anomalous magnetic moment in the forth order perturbation, i.e.,

-O.328(a/~)2, 13) from our scheme, but, was not successful. As has been

shown already, a part of the Lagrangian, -(j~A~)/c~in Eq. (5-31) is

essentially equivalent to the interaction term of the electron with the

external electromagnetic fields in the field theory14). A part of this

term gives the effective Hamiltonian of Eq.(6-5). Therefore, °G 1 , °Um,

and °G2 have already been included in the original Lagrangian. Although

lA term introduces a change in am, it is still a zero term in the

Lagrangian, and, if we introduce the action of oOG 2 in Ls by oOn/on of

Eqs. (6-7) and (6-9), then we have to include oOU further, otherwise the. m
interaction will be counted twice. But the inclusion of oOUm exposes

the whole scheme to an entirely new reconstruction, which is not easy.

Probably, in order to get this term, the reacting electromagnetic fields

must be included and quantization and renormalization procedure may be

needed. Accordingly, recalling the case of the spin-orbit coupling, our

approximation in the present stage seems to have its limitation in this

range.

§7. The principle of factor two

Here, we propose the principle of the factor two, stating that, in

the new frame, if we had a difference of a factor of two between a clas­

sical c-number equation and the corresponding quantized q-number equa­

tion, we should accept the difference as granted, and lieve the clarifi­

cation of the di~crepancy as the next problem to be studied in future.

We have such a situation already in the cases of the self-electromagne­

tic momentum l ), the angular moment~m as shown in Eqs. (4-14) and (4-15),

the spin-orbit coupling term of Eqs. (5-12) and (5-18f, and the flux

-30-



Rigorous Deduction of the Dynamical Equations ...

quantization problem in §6. As we know, although the explanations have

been found in these cases, it might be a wiser way to accept such a dif­

ference as a.principle, i.e., as one of the general characters of the

interface between classical and quantal physics. Of course, explanation

must be found out, but, it could be quite a tedious problem in some

cases.

The relation between the total spin angular mbmentum of VR and

the eigen value of the angular momentum component of the quantized ele­

ctron spin is another example of this principle. The difference will

not appear in the fields where the classical experiences are plenty,

such as the orbital motion of the electron, but, it may appear in a fie­

ld where no classical experience is present. Electron spin is the item

where no classical experience is present. Therefore, we generally ex­

pect the necessity for the adoptation of this principle for spin related

phenomena. The presence of this principle, however, presents just a

small caution in the quantization procedure of the new frame, i.e., for

the conversion of the c-number equations into q-number equations, so

that no essential change in the structure of the new frame is required.

We propose that the essential statement of the new frame that the clas­

sical c-number equations transit directly to the quantal q-number equa­

tions by a suitable quantization procedure is quite effective. The only

lesson th~t we have learned in the present study is that we must be very

careful for the quantization procedure, if the c-number equations are

quite in detail and deal with the physics where no classical experience

has been present. We note further that the concept of classical experi­

ence may need a certain reconsideration in some cases. The size of. the

electron is one point of this sort. Admission of the presence of persi­

stent currents may be another example. The arrangement of the Stern-Ge­

rlach experiment looks classical, but, the interpretation is essentially

quanta1 23 ), being deeply involved the problem of measurement. There­

fore. a possibility always exists that we have to change our classical

frame slightly in the c-number representation of the new frame.

§8. Conclusion

We have refined the mathematical frame of the covariant application

of the principle of least action and have succeeded in deriving the' dy­

namical equations of the classical electron from the first principle,

precisely, without introducing any adjustable parameters. The equations

h~vebeen quantized easily, giving the Dirac type quantal wave equations

for the electron with g = - 2 (1 + .a/21T), without having the complicated

renormalization procedure. Thus, the new frame in physics has acquired

a sound quantal basis for the kinemeticsof the electron, supporting VR
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as the best classical IlIvdel of the- electron. Al. though, in a few cases.,

we have found certain detailed structures at the interface between the

c-number classical equations and the q-number quanta I equations, the

differences are mostly due to. the improper use or incompleteness of the

classical. physics ~tself. The difference in the factor of two has ap­

peared several times, but, the origins of these differences have been

well clarified. We conclude, therefore, that the new frame can work ve­

ry well down to the spin-orbit coupling in atoms.

Since VR model is so simple and reasonable, regarding the electron

as a quantized electromagnetic soliton, the success of the present study

may, inversely, justify the procedure of the Dirac electron, because the

two approaches gave essentially the same equations in very high accura­

cy. We hope that further progress of the new frame will be made in fu­

ture in many other directions. It is noted that it is easy to derive

the Fermi contact term from VR modeI 2 ). Although it may be somewhat too

ambitious, the Paul~ principle for the symmetry of the total wave func­

tion is also derivable. from our scheme, by taking into account the mag­

netic 'interactions of the approaching two VR electrons and requiring

that the total orbital wave function should mathematically be regular

when the twoVR electrons approach to the range of OR. VR model con­

sists of a persistent curreI¥t having the velocity of light, which has

been essential for the relativistic calculation. We may suggest that

these relativistic persistent currents may play a role internally in

other elementary particles and nuclei.

In the last, we may say that we had a definite one step forwards

towards the extension of the new frame to the quantal physics of both

macroscopically large inhomogeneous systems, such as biophysical func­

tions, composite electro-optical elements, and logical circuits for high

speed computations, and possibly, basic particles, such as nuclei.

Appendix A. The classical size of the electron

Although the electron is definitely a quantal existence, in the new

frame of physics, in order to get the analytical continuation between

quantal and classical physics, a requirement exists to find out the best
4

self-consistent classical representation of the electron, which can be

used as the basic element in the classical frame of the new physics,

especially in its Maxwell-Lorerttz~lectromagnetism. It has turned

out that our VR model satisfies this requirement. With VR, we have to

accept that the classical size of the electron is in the range of the

Compton wave length, which, in terms of the .radius, be g'X gtr/mc '"
2 c

10- i = la- 12m. We know that there is an old concept, in which the
-15electron is assumed to be a point, less than 10 ~, and the enormous
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electrostatic self-energy associ~ted with this point charge has been

just, without reason, disregarded. This concept can not be used in the

new frame, because we look for a strictly selfconsistent electromagne­

tism and, in this old representation, the problem of the electrostatic

self-energy itself affords definite selfinconsistency. Therefore, the

only choise for the new frame is VR, and, the question is whether VR can

represent the classical electron adequately or' not.

Let us compare the old and new concepts. For the electron, the mi­

nimum Heisenberg uncertainty in the location, bX, and the de Broglie

wave length, AB ' in the proper frame are

n
bx tV - = 7\me c

h
A =B me (AI)

i.e., its two Compton wave lengthes. Therefore, in the old concept, the

point electron is assumed to make an iteneration in the range of the

Compton wave length, being called the "Zitterbewegung", and intrinsic

spin magnetic moment of the electron is ascribed to the rotational orbi­

tal motion of this Zitterbewegung, leaving the g-factor problem(Why g

2) unsolved. In the new concept, the electron itself is a pers~stent

-2 0
current, having the radial extension of gA

c
tV 10 A ar:d the spin angu-

lar momentum, tt , as its intrinsic virtue of the model. It is noted

that, since the electric charge has relativistic invariance, although

the ring charge is assumed to rotate with the speed of light, c , (being

identical to the velocity of the Zitterbewegung in Q.E.D.) this order

comes about decisively as the minimum size, being supported also by, the

Q.E.D. through its Darwin terro 18 ) •

Now since Eqs.(Al) exist, the question of whether a person takes

the new or old model in his brain may be a matter of taste, but, in the

new frame, we have to take VR model, because only this model gives a

classical electron with its all non-wave virtues, enabling to construct

a consistent Maxwell-Lorentz electromagnetism, and to establish an ana­

lytical continuation between quantal and classical physics 3 ).

It is noted that, different from the a-particle, no classically ex­

plainable quantitative Rutherford scattering data exists for the elect­

ron. Although the quantum mechanical calculation of the scattering of

the electron by an idealized electrostatic Coulomb potential gives a

formulus whose leading term is identical to the Rutherford classicai

scattering formulus 19 ,20), no such idealized Coulomb potential is avai­

lable in nature "for the electron scattering, so that, the observed scat­

tering data of the electron by materials are rather utilized quantally

to determine the electric charge dist-ribution of the nuclei in the tar­

get21 ). The electron beams of less than 10 MeV give only the electron
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diffraction by the target, and the bearn of very high energy, having the

velocity of light, e.g., 0.5 Bev21 ,22), still gives diffraction by the

nuclei of the target, si~ce its de Bloglie wave length of 2.47 x 10-15

m is yet in the range of the size of the nuclei.

It is further noted that although the high energy electron-positron

or electron-electron collision experiments have given the cross sectio­

nal data of the electron, from which the size is said to be less than

10-17 m, the experiments are of essentially quantum mechanical, and,

although the theory had assumed the point charge electron, the diver~

gence problem was left unsolved, and, under the allowance of the super­

position and Pauli's exclusion principles, the obtained cross sectional

data do not necessarily be related directly to the classical electro­

magnetic size of the electron. Classically, the two particles in these

experiments, and also two VR's, may behave like as two electromagnetic

solitons, which can penetrate or overlap mutually, without introducing

any particle reactions. In this case, therefore, the word "size" maybe

the replacement of the probability of the quantum mechanical reactions,

for which, the classical frame has nothing to do. Of course, in the new

frarn~, we are mostly interested in the physics of materials, in which

the relevant energies are very low, and electrons are regarded eternal.

In conclusion, we state that no classically explainable Rutherford type

sL'Uple data, \'lhich can appoint for the size of the electron to be less
-2 °than 10 A, has been presented.

The charge distribution range of 10-2 A, given by VR model can not

only describe most of the classical properties of the electron but also

describe ,the hyperfine field to the nucleus precisely2). The instab~li­

ty of highZ number nuclei, which is known to be partly due to the cap­

turing of their Is electrons, might also be explained by the fact that

the mean ~adii of Is orbital in these nuclei approach to the range of

10-2 A•

Appendix B. Exact meaning of the Zeeman energy

Let us assume two persistent current systems C
l

and C2 with °jl(r)

and °j2(r), being at rest in the frame oK. We assume that Cl is large

and is the source of the magnetic field oBI (r) , and C2 is a magnetic

moment, °P2' Then the total magnetic energy can be represented as

OJ 1 (r . ).OJ 1 (r . )
IIIIII .. "1 2 ] dV.dV.

8 nr .. c 1 J
1J

°jl(r. ).Oj2(r.) °j2(r. ).Oj2(r.)
+ IIIIII 1 2 ] dV.dV. + IfIIII 1 2 J dV.dV .. (Bl)

4 nr .. c 1 J 8 nr .. c 1 J
1J 1J
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°j 1 (r i ) .oj 2 ( r j ) 1
- 2 6(4 )]dV.dV.

TTr.. 1 Jc 1J

Here, by fixing the point i and j relatively in Cl or in C2 ' (1/4nr
ij

)

's for °jl(r i ) and °jl(r j ) or for °j2(ri ) and °j2(r j ) can be put as zero

by assumption. This assumption does not violate the generality of the

analysis. Since the vector potential is represented as

we get

°A( r. )
1

°j 1 ( r . ) +OJ 2 ( r . )
III J ) dV

4 TTr .. c j
1)

(B3 )

OJ (r.) OJ (r . )
60 U = III 1 1 6°"dr.)dV. + III 2 J 6°A(r.)dV. + 6*[-O~2 .oH

I
] • (B4)

m C 11 C ))

Here, * indicates that the variation must be with respect to the mutual

geometrical configuration between Cl and c2 . Further, by considering

the actual process of the variation, we get (See Eq. (6-5) • )

0' 6 t I aOA ( r. ) . 6t 1 <fA ( r j )
III J 1 (r i )[Io C at

1
dt]dV i + IIIOj2(r j )[Io C at dt]dV j

(B5)

Hence, we get· the exact meaning of the Zeeman energy

6* r - 0... .oH ] = 6 ° G2 + 6 ° Urn + 6 ° G- ~2 I 1
OJ .oA OJ .oA

6*[ -III 2 C 1 dV] = 6*[ -III 1 C 2 dV]

6* [ - III ~ 1 •°H2d V ] = 6* [-°um ] ( B 6 )

In VR, as shown in Eq. (2-9), since the current flows with the speed of

light, c , the relative change induced is very small, we can assume that

6°G 2 comes from the action of cOAl ' while the direction and magnitude

of o~2 have been kept constant. Then, we get from Eqs. (B5) and (B6)

(B7)

Accordingly, we expect
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(B8)

indicating that we can neglect safely both SOG
l

and 6°U
m

, as is the

case of the present Dirac frame of the quantum theory for the electron

spin. It will be noted that this relation does not hold for the Meiss­

ner effect, i.e., for the huge orbital diamagnetism of many electron

systems3 ) •
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Fig .1. Rel.ativistic geometry of the laboratory frame K, an instantane­

ous laboratory frame *K, and an instantaneous proper frame oK.

*K and oK are related by a pure Lorentz transformation.
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