中間秩序形成の動力学と異常記憶現象 職序化過程における協力と乱れ その動力学的研究 (第1回) 科研費研究会報告

松浦 基浩 村上 洋一

物性研究 おわりに

1984年11月20日

URL

京都大学
中間相形成の動力学と異常記憶現象

坂大 基礎工 松浦基浩 村上洋一

自然に見られる多様な相変化の中には中間相を経た長距離段階相においては、相変化が段階的に進行する場合がある。中間相は恒数変化とみなされ、変化の進行に伴い中間相の相態を理解することができる。このような相変化は、中間相の相態を理解するための重要な手掛かりとなる。

1. 原則
- 相互作用する複数相においては相変化と相変化を経て段階的に進行する相変化を記憶現象として理解できる。相変化の進行は単純に相の変化だけではなく、相の変化が同時に起こっている。

2.
- MCl₂・GICにおける相変化
 - GICの相変化は通常、相移数値の相変化として考えられる。相変化はGICの相の変化が進行するため、相の変化が進行する。

 図1はGCl₂の相変化を示している。GCl₂の相変化はGCl₂の相の変化が進行するため、相の変化が進行する。
Fig. 1 (面間構造) Ni, Co, Cu

Fig. 2 (図2) T(K)

Fig. 3 (面間構造)

Fig. 4 (図4)

Fig. 5 (図5)

3. 磁化曲線測定における二段階磁化現象

3. 磁化曲線測定における二段階磁化現象

3. 磁化曲線測定における二段階磁化現象

3. 磁化曲線測定における二段階磁化現象

3. 磁化曲線測定における二段階磁化現象

3. 磁化曲線測定における二段階磁化現象

3. 磁化曲線測定における二段階磁化現象
分の温度と高温側に向って等温量と温度を測定し、曲线(a)が得られる。再び十分に温度で安定に
等温状態に放置されると同じ結果の下でゆっくりと温度に冷却すると曲线(4)が得られ
る。曲線(a)はその測定時の条件や、後述のように等温状態を保つこととは、非平衡状態の
section 1. 非平衡状態における残留磁化と記憶効果 そこで前節で見たように低温側二相での磁
化は、磁気学的に観察される。図7は、磁場を一定に保ったまま、温度を上昇させた場合の変化を示
した図による。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。磁場を一定に保ったまま、温度を上昇させた場合の磁化を示す。
1. 通常したとしてデニスメトラールを不導入する。

\[M_r = \int_{T_c}^{T} dM = M_r (T, T_c) \tag{1} \]

この式は変分する冷却解像 \(T_c (T, H) \) にとらえられる。又、塩酸の昇温過程においては上記のように仮想的了然に変化する正解していく。いずれも昇温過程での \(M_r-T_c \) 交点を \(M_r (T, T_c) \) の変数 \(T \) とし \(T_r = 0 \) にとって得られる。例えば図式 \(T_c \) の \(M_r-T_c \) 交点は \(T_c (T, H) = 0 \) として \(H = 1 \) の場合 \(H = 0 \) の線上で策定された相である。図式 \(T_c \) の \(M_r-T_c \) 交点は \(H = 0 \) の場合 \(H = 0 \) の相則と策定され相則は求めた交点と求めていられる。これらの仮想的了然をより一般化し誘導してみようと考えているがこれについては省略する。

5. 中間相における異常変態現象

さて、昇温変態の温度変化から異常相の性質をしぼる一つの試みとして一連の昇温変態過程を信頼して考慮する変態についての到る。既に述べたよう

と若者がたとえ \(T_c \) をもとと昇温にかけた場合の変態は在来 \(H = 0 \) から昇温変態の各過程における熱平衡を保つと昇温の変態相についての変態を説明している。即ち外場が同じに変化は昇温相に突き当たる外場があらたにその変態での昇温価をとる。これにたいして \(H = 1 \) どの変態 \(T_c \) をやや昇温したのちリターンして変態を下げる側がリターン変態 \(T_c \) の変態相変態を説明する。その後再び昇温して \(T_c \) までは変態を説明している。そして \(T_c \) がより高い温度にとる再び最初に変態している昇温変態値を変態する。図式はこの事情をよく説明している。

さて、変化の続きは \(T_c \) と \(T_c \) の中間の温度 \(T_{cr} \) を用いて昇温した後リターンして変態を下げる場合の変態である。図式 \(8 \) も示すように変化は昇温のない場合の昇温価を定める。この意味では中間相であるから変態相であるかに同様の変化がある。更に詳しく \(T_c \) は低温で再度リターンして昇温すらすらと変化を進めた道程に誘導して \(T_c \) と \(T_c \) での変変態する。即ち \(T_c \) は低温相変化し新しい状態を有するように変化を進む。その変化を実験的に昇温して \(T_c \) までは変態を説明している。これにたいして \(H = 0 \) どの変態 \(T_c \) をやや昇温したのちリターンして変態を下げる側がリターン変態 \(T_c \) の変態相変態を説明している。そして \(T_c \) がより高い温度にとる再び最初に変態している昇温変態値を変態する。図式はこの事情をよく説明している。
6. 阻塞性

予防において、グラファイトに亜入力する塩類液塩化物にみられる特性的な役割を伴う役割として、中間反応の特性を示す。非平衡状態における塩の

結晶形を遅延するという、いわゆる非平衡現象を示すと考えられる。得られた結果は、上記の

結晶形状を示すことが分かった。しかしこの特性特性は、いわゆるようなランダムの形と

することががん液塩の結晶の形状を支配するが、一般化ガス反応の側面として理解される通

じに対するガラフライダの内部構造を特異的に示している。この問題を解決する一つの方法として、

結晶の非平衡状態を調べると、有用である。これらの結晶の特性に基づいて、この研究の主な

目的は結晶化過程における温度制御を進めてみたと大いに参考にしたいと思う。

平研究は、お世話の本大使のご協力とご協力により、進延大学の養成研究室のゲスト

との共同研究の一環として始まりたんだけれども、これらの研究の内容を考察した上で

研究を進みたいものである。

参考文献
1) 新波鉄生：「三角格子を塩化物液塩に作用する非整列電気流」,
2) 松浦、小山、村：「中間反応形成と乱れ」、電磁流体学新編における協同研究会

（1982年） 3 3 3 号。
3) 村村、松浦鉄生、村：「CoCl2-GTC の结晶成長」
4) 鈴木池田村上松浦・著者・西谷吉晴：「NiCl₂・GICの磁気相転移」，
5) 鈴木池田村上松浦・著者・西谷吉晴：「CoCl₂-, NiCl₂-GICの磁気相転移」
田沼幸興 "Progress of the Researchs on Graphite Intercalation Compounds"
特別講演実験報告書4章1編．
6) 著者, 『グラファイト・インターカレーション化合物』,
固体物理, 16(1981)434．
7) 鈴木池田村上松浦：「ギマステージCoCl₂-GICからの磁気的中性子散乱」
Synthetic Metals; 8 (1983) 43．
8) 池田：松信
9) J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, D. R. Nelson；
10) 松浦：著者「次元数の変数数の工程転移」，