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term on the right hand side of Eq.(l) is interpreted as a product of flux and force;
a/axk(l/T) is force conjugate to heat flux~, -aui/axk/T is force conjugate to

momentum flux (viscosity stress) 0lk' -a/axk(~a/T)+Fak/T is force conjugate to

diffusion flux P 6 k of the chemical component a, and, A IT is force conjugate toa a r
velocity of extent of the chemical reaction r.

However, it seems that the division of each term in the expression of the local
entropy production into flux and force is not so definite. It is desired to have
some general principle for determining fluxes and forces independently so that there
would be no ambiguity in the division of each term in o[S] into flux and force.
This problem was noted by Aono[3] some time ago.

In the standard textbooks[1,2] of non-equilibrium thermodynamics, tirne-evolution
of local thermodynamic variables is derived on the basis of conservation law~) and
local equilibrium assumption. 'l'he local entropy change is given in te:rlllC5 0 l'

. entropy flow ~nd local entropy production o[S]. The local entropy production
turns out to be sum of several terms, each of which is regarded as a product of two
quantities; flux and conjugate force. 1i'or example, in the case of a rnulti-
component fluid, which moves with velocity u, the local entropy production o[S] is
given in the following form[l,2],

a au. n a a~r
o[S]=~--a--(l/T)+O!k/T.~ - ~lP 6 k[--a--(~ /T)-Fak/T]+ ~ -at Ar ,

Xk 1 X
k

a- a a x
k

a

where i,k stand for+spatial components, x,y,z, and we use summation convention. T is
local temperature, Q(~) is a vector representing heat flux. 0lk"is stress tensor

due to viscosity of the fluid. ~ (6 k) is the relative velocity of chemical
a a

component a with respect to convection velocity u. ~ is chemical potential of
+ a
F (F k) is an external force on unit mass of the chemicala a

are extent and affinity of a chemical reaction r.

The conventional local equilibrium assumption is the following; we assume, for
change of local thermodynamic variables per unit mass, the same relations as those
for a macroscopic equilibrium system, namely

n
Tds=de+pdv+ L ~ dc (1)

a=l ex ex
where T is temperature, p is pressure, s, e, and v are entropy, internal energy and
volume per unit mass. ~ and c are chemical potential and mass concentration of

ex ex
chemical component ex. When we deal with a fluid, which performs convective motion,
it is better to take total energy( kinetic energy+potential energy+internal energy)
and momentum as thermodynamic variables instead of simply taking internal energy as
a variable describing states of the fluid, because they are conseved quantities.
Hence, by noting that local total energy per unit mass £ is given by

2
£=u /2 +Q+e, (2)

where n is local potential energy per unit mass, the relation (1) is extended to
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n
Tds=dE~u.du.+pdv+ E (~ +w )dc . (3)

1 1 a=l ex ex ex

Here we have introduced local potential energy per unit mass of the chemical component
ex, n

dQ= E w dc , -3w /3xk=F k'
a=l ex a ex ex .

If we write the local equilibrium assumption (3) in terms of local densities of those
thermodynamic quantities, we obtain

n
d(ps)=d(pE)/T-u.d(pu. )/T+ E (~ +w )dp /T, (4)
n 1 1 a=l ex a ex

where p= E p is mass density of the fluid; p=v-
l

It is noted that the Gibbs-
ex

Duhem re~~tion should also be extended to
2 n n

E+PV-U -Ts- Ew c = E ~ c , (5)
a=la ex a=l ex a

along with (3). In other words, the chemical potential ~ is dffferent from the_ _ a
2

chemical potential in the absence of convection ~ by ~ =~ -u /2.
a ex a

W d "d d . t t t d d (diff) d (chem) h d (diff) de may 1V1 e p 1n 0 wo par s; p = P + P , were p stan s
ex ex ex (R) ex

for the change of the density due to diffusion and dp c em due to chemical reactions.
ex n ( )

If the external force is gravity or electric field, we may put E w dp chern =0. Hence,
ex ex

we may rewrite (4) into the following expression which include~=~hemical reactions,

n (d'ff)
d(ps)=d(PE)/T-u.d(pu.)/T+ E (~ +w )dp 1 /T+EA d~ /T, (6)

1 1 ex=l ex a a r r r

where affinity A is defined in terms of stoichiometric constants v [4J,
r ar

n
A =- E ~ v (7)

r ex=l a ar

(8 )

A B
r----,--~~

dX'
-:-7~

X~ X~.

Let us recall how thermodynamic forces are defined for a macroscopic system.
Suppose the state of an isolated system is described by extensive quantities, Xl' x

2
.. , x

N
and entropy of the system is a function of these quantities S(x

l
,x

2
,·· ,x

N
). '

The differential of the entropy is given in the following form,
N

dS= E X,dx.
i=l 1 1

and we may call X. "force". Indeed, if X. is positive and large, then a small
increment dx. of the extensive quantity x. giVes rise to large increment of the
entropy. ~'In other words, according to1the second law of thermodynamics, the
positive large value of X. may induce the increase of the extensive variable x. in
the system. The situation is more clearly illustrated when we consider two1coupled
systems A and B. Entropy and extensive quantities in each system are denoted by

superfixes A and B. Namely

A N A A B N B B
dS = E r:dx., dS = E X.dx ..

i=l 1 1 i=l 1 1

Suppose some amount ox. of a physical quantity x. is
transported from A to ~. Then the increase or total
entropy is given by

A B B A
oS=oS +oS =(x.-x.)ox ..

111

Hence if x~>0, this transport increases the total entropy.
1 1

In other words,
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The

part

+ ~
mass flux puis also divided into the reversible part J and the dissipative

a ex a
3D.
a' +R + +D +

J=p u (convection flux), J =p A (diffusion flux). (18)
a a a a a

The division of fluxes into reversible parts and dissipative parts 3eerns rea[;onuLJle
since the reversible parts are, as is clear from their expressions, sirnply due to
convection.

Up to now the argument is rather formal and there is no advantage in choosing,
for the expression of entropy production, either (1) or (15). When we deal with
linear thermodynamics, namely, when we relate the fluxes and forces by linear
relations, it becomes rather serious how one defines forces and fluxes.
Conventionally, the linear relations between fluxes and forces are given as

a n a aUn
Q=1k..-,,-(1/T)-LL

k
,[-,,-(~/T)-Fj/T], a~k=L'k -,,-IT

!{ JoX. '1 ,aJ ox. ex all ,mnox
J a= J m

a n a ( )
p t. =L k '[-a-(l/T)]- ELk 8'[-a-(fJ

B
/T)-F

B
./T], 19

a a a ,J x j 8=1 a ,J x j J

where we have used Curie's principle. On the other hand, in our formulation,
the linear relations between fluxes and forces should read, according to Curie's
principle, as

(20)

nan fJ +w
~-uiaik+~=LIPaWa~ak=LkJ.~(l/T)+ r Lk aj[- a~.( aT a)],

'" j a=l' J

a n a fJ 8+W
8

p ~ =1 k '[-a-(l/T)]- L L k B'[- -a-(-T-)],
a a a ,J x j a=l ex ,J x j

Let us consider, a~ an illustration, the following situation: Taere is only
one chemical component; ~=O. There is no external force; W =0 and F =0. There

ex ex
is no temperature gradient and no chemi~al potential gradient. In this situation,
the conventional linear relations give Q=O and o!k=L'k au lax IT, the latter of

1 1 ,mn n m
which may be written in terms of viscosities,

, _ (aui + a~ 2 l' d' +)+ l' d' + ( )
a· k - n -a- -a- - -3 u'

k
lVU l,;u' k lVU. 21

1 xk Xi 1 1

On the other hand, our formulation leads to the following relations,

(22)

a' =0 (otherwise).
ij

~-uiaik=O and aik=Lik,mnaun/axm/T,

the latter of which can be written in terms of viscosities as given in Eq. (21) .
The first one implies that there still exists heat flow even in the absence of
temperature gradient. As an illustration, let us consider a shear flow in

x-direction, u (y) which is a function of the
heighty. ~hen, we have

au
a' =a' = x

xy yx ay

[l]L.Landau & E.Lifshitz, Fluid Mechanics; [2]P.Glansdorff & I.Prigogine,
Structure,Stabili.te et Fluctuations(Masson, 1971); [3]0.Aono, ~.Stat.Phys·4)
2 113(1972); [4]I.Prigogine & R.Defay, Chemical Thermodynamics~Longman195 .
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Conventionalt linear thermodynamics
'---------~'X.

After all, I have still a
of "heat".
Heferences:

Hence we ha~e heat flux in the y-direction,
au

n x
Qy = "23Y

tells Q =0.
y

feeling of necessity of clarifying the concept and reality
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the irreversible transport of x. is caused by the difference of conjugate force X.
in neighboring cells because of1the second law of thermodynamics. Hence it :i~
reasonable to define thermodynamic forces for transport of conserved quantities by
gradients of thermodynanic forces in the differential form of local entropy density,
while the thermodynamic force for a chemical reaction is simply A /T ( not gradient
of A /T) because chemical reactions take place locally. Thus ffom Eq.(4), we may
listrup thermodynamic forces corresponding to thermodynamic quantities as Table 1.

Table 1 Thermodynamic Forces

Physical Quantities Local Densities Thermodynamic Forces

Total energy

Momentum

Diffusional mass

Extent of chemical

pu.
(aiff)

Pa
reaction ~

"r

a/axk(l/T)

-a/axk(ui/T)

-a/axk[(~ +w )/T]a a
A /T

r

the local momentum density,
laws,

(total energy conservation)
(10)

(11)(momentum conservation)
n

-+ -+
pF= E p F .

a=l aa

The time evomution of the local total energy density,
the local mass density is given from the conservation

a .... a..2 P n
a-(P£)+---[PQ (~ +e+ -)+ E P w U +0 -u.a~ ]=0

t aXk k P a=l a a ak ~ 1 lk .

a a
-;-t(PU.)+ -",- IT·k=pF.
o 1 oX

k
1 1

where rrik=pui~+poik-aik' and

-.1. P(diff)+ _a_ u =0 (mass cons~rvation). (12)
at a aX

k
Pa ak

From these conservation laws, we may derive the time evolution of the local entropy
density in the following form,

(16)

(14)

(1) but ~ is now defined
entropy p~oduction (1)

On the other hand,

Rreversible part IT
ik

and the

D n
(J )k= E p w ~ k+O -u.a~k·

£ a=la a a .~ 1 1

can be also divided into theThe momentum flux IT
ik

dissipative part n~k;

a -+
at(ps)+div S =a[S],

where the entropy flux S is defined by
-+-+ n -r -+ -+-+-+
S=Q/T- E p ~ ~ /T+psu and ~=u -u.

a=l aa a a

The local entroly production a[S] is the same expression as
by (5). It is noted, however, that the expression of the
is not in terms of thermodynamic forces, just listed above.
Eq.(l) can be alternatively written as

aE.: An a aU. n a jJ +w r r
a[S]=[Q -u.a~ + E p w ~ ]---(l/T)+(-a~ )[----(-.!..~- E p ~ -(~)+ E at T

~ 1 lk a=l a a ak aXk Jk dXk T a=l a akaXk T r

Therefore we may define thesefactors multiplied on the thermodynamic forc~~5~s
"fluxes"; in fact, these are "irreversible parts" of fluxes in taR conservation laws.
Thus the total energy flux J is divided into the reversible part.J and the dissipative

-+D £ £part J . .
£'

R
(J£)k=puk(£+P/p),
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