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Abstract

Let G be the classical group and let Mk(G) be the based moduli space of G-instantons
on S4 with instanton number k. It is known that Mk(G) yields real and symplectic Bott
periodicity, however an explicit geometric description of the homotopy equivalence has not
been known. We consider certain orbit spaces in Mk(G) and show that the restriction of
the inclusion of Mk(G) into the moduli space of connections, which, in turn, is explicitly
described by the commutator map of G. We prove this restriction satisfies a triple loop
space version of the generating variety argument of Bott [6], and it also gives real and
symplectic Bott periodicity. This also gives a new proof of real and symplectic Bott
periodicity.

1 Introduction

Let G be a compact connected simple Lie group. Then there is an isomorphism π3(G) ∼=
π4(BG) ∼= Z. We will fix an isomorphism π3(G) ∼= Z. Then principal G-bundles over S4 are

classified by Z = π3(G), and denote by Pk the principal G-bundle over S4 corresponding to

k ∈ Z. Let Ck(G) be the based moduli space of connections on Pk. Then we have a natural

homotopy equivalence

Ck(G) ' Ω3
kG

where Ω3
kG stands for the path component of Ω3G corresponding to k ∈ Z = π3(G). We will

identify Ck(G) with Ω3
kG by this homotopy equivalence. Let Mk(G) be the based moduli space

of instantons on Pk. Then we have a map

θk : Mk(G) → Ω3
0G

defined by the composite of the inclusion Mk(G) → Ω3
k(G) ' Ck(G) and the homotopy equiv-

alence Ω3
kG ' Ω0G, the shift by −k ∈ Z = π3(G).

The topology of the map θk was first studied by Atiyah and Jones [3], and, later, it was

proved by Boyer, Hurtubise, Mann and Milgram [9], Kirwan [15] and Tian [19] that the map θk

is a homotopy equivalence in a range, which is known as the Atiyah-Jones theorem. As a conse-

quence of this result, Tian [19] showed that the colimit of the map θk yields real and symplectic
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Bott periodicity. However, an explicit geometric description of the homotopy equivalence is

not known While Bott periodicity was given by a map explicitly defined by the commutator

maps of the classical groups [7]. In [10], it is shown that the map θk has some relation with

the commutator map of G when k = 1. Recall that Bott [6] also used the commutator maps to

study the topology of loop spaces of Lie groups. Exploiting the above result of [10] in connec-

tion with the classical result of Bott [6], Kamiyama [13] studied a triple loop space analogue of

generating varieties of Bott [6].

We will give a mild generalization of the above result of [10] for arbitrary k. Using this, we

prove triple loop space version of the generating variety argument [6] in a sense somewhat dif-

ferent from [13], and also prove Bott periodicity. This yields a new proof of real and symplectic

Bott periodicity. We will give applications of this result to the homotopy types of Mk(G).

2 Subgroups of classical groups isomorphic with SU(2)

Let G be a compact, connected, simple Lie group with a fixed isomorphism π3(G) ∼= Z. Note

that G acts on Mk(G) via the action of the basepoint free gauge group of Pk on Mk(G). As

is shown in [10], there is an orbit of this action for k = 1 such that the restriction of θ1 :

M1(G) → Ω3
0G is presented by the commutator map of G. By putting additional assumption,

we can prove this for arbitrary k by essentially the same way in [10] as follows.

Lemma 2.1. Suppose that there exists a subgroup H of G isomorphic to SU(2) ≈ S3 such that

the inclusion ι : H ↪→ G represents k ∈ Z = π3(G). Then there exists ω ∈ Mk(G) satisfying:

1. The orbit space G·ω is homeomorphic with G/C(H), where C(H) stands for the centralizer

of H.

2. Let Γ denote the composite:

G/C(H) ≈ G · ω ↪→ Mk(G)
θk−→ Ω3

0G

Then we have

Γ(gC(H)) ' gι(h)g−1ι(h)−1

for g ∈ G, h ∈ H.

Proof. Let α be an asymptotically flat connection on Pk. We regard S4 as R4 ∪ {∞}. Recall

from [3] that the homotopy equivalence Ck(G)
'−→ Ω3

0G takes α ∈ Mk(G) into its ’pure gauge’

α̂ : S3 → G at ∞ ∈ S4 normalized as α̂(∗) = e, where ∗ and e are the basepoint of S3 and

unity of G, respectively. (See [3].) The action of the basepoint free gauge group of Pk is locally
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the conjugation by G. Then the map θk is G-equivariant under the action of G on Ω3
0G given

by g · λ(x) = gλ(x)g−1 for g ∈ G, λ ∈ Ω3
0G, x ∈ S3.

Let P be a principal SU(2)-bundle over S4 represented by 1 ∈ Z ∼= π3(SU(2)). In [2], an

asymptotically flat instanton $ whose pure gauge represents 1 ∈ Z ∼= π3(SU(3)). Then the proof

is completed by putting ω to be the push forward of $ by the inclusion ι : H ∼= SU(2) → G.

The original form of Bott periodicity [7] is given by such a map Γ in Lemma 2.1 where

SU(2) ≈ S3 is replaced with U(1) ≈ S1. On the other hand, there is known a deep relation

between Mk(G) and Bott periodicity as in [15], [18], [19]. Then we expect the map Γ in Lemma

2.1 may yield real and symplectic Bott periodicity which has period 4. Also we expect G/C(H)

and Γ in Lemma 2.1 may yield a 3-fold loop analogue of a generating variety for a loop space

of a Lie group, which is already studied by Kamiyama [13] in a slightly different sense, that

is, algebras over the Kudo-Araki operations. Then we introduce a family of subgroups of the

classical groups which are isomorphic with SU(2) by which we can prove the above argument.

Hereafter, we put (G,H, d) = (Sp, O, 1), (SU, U, 2), (SO, Sp, 4). We will define a family of

subgroups Sk,l(G) of G(dk+ l) indexed by positive integers k and non-negative integers l. Since

the Lie group G(dk + l) must be simple, we will assume dk + l > 4 when G = SO.

Let c : O(n) → U(n), q : U(n) → Sp(n), c′ : Sp(n) → SU(2n), and r : U(n) → O(2n) be

the canonical inclusions. In order to make things clear, we write the maps c′ and r explicitly

as follows. Let Mn(K) be the set of all square matrices of order n over a field K. For A =

(aij), B = (bij) ∈ Mn(C) such that A + Bj ∈ Sp(n), we put

c′(A + Bj) = (c′(aij + bijj))

where c′(a + jb) =

(
a −b̄
b ā

)
for a, b ∈ C. We also put, for C = (cij), D = (dij) ∈ Mn(R) such

that C + D
√
−1 ∈ U(n),

r(C + D
√
−1) = (r(cij + dij

√
−1))

where r(c + d
√
−1) =

(
c −d
d c

)
for c, d ∈ R. We denote the matrix

(
A O
O B

)
by A ⊕ B. We

consider the following family of subgroups of the classical groups isomorphic with SU(2) ≈ S3:

Sk,l(Sp) ={αEk ⊕ El ∈ Sp(k + l) |α ∈ Sp(1)}

Sk,l(SU)={A ⊕ El ∈ SU(2k + l) |A ∈ c′(Sk,0(Sp))}

Sk,l(SO)={B ⊕ El ∈ SO(4k + l) |B ∈ rc′(Sk,0(Sp))}

where En is the identity matrix of order n. We easily see

c′(Sk,l(Sp)) = Sk,2l(SU), r(Sk,l(SU)) = Sk,2l(SO).
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We fix an isomorphism π3(G(dk + l)) ∼= Z such that the inclusion Sk,l → G(dk + l) represents

k ∈ Z.

Let Ck,l(G) denote the centralizer of Sk,l(G) in G(dk + l). Then we have

Ck,l(Sp) = qc(O(k)) ⊕ Sp(l).

We also denote by Ck,l(U) the centralizer of Sk,l(SU) in U(dk + l). Then we have

Ck,l(U) = {A ⊕ B ∈ U(2k + l) |A = (aijE2) ∈ U(2k), B ∈ U(l)}.

In order to describe the centralizer Ck,l(SO), we give another description of Sk,l(SO). Define

the action of Sp(1) × Sp(1) on H by

x · (p, q) = p−1xq

for (p, q) ∈ Sp(1) × Sp(1) and x ∈ H. It is well known that this action yields the universal

covering homomorphism ρ : Sp(1) × Sp(1) ∼= Spin(4) → SO(4). Then it easily follows that

Sk,l(SO) = {A ⊕ · · · ⊕ A︸ ︷︷ ︸
k

⊕El |A ∈ ρ(1 × Sp(1)) ⊂ SO(4)}.

We denote the extension H → M4(R) of ρ |Sp(1)×1 ambiguously by the same ρ. Then one can

easily verify

ρ(x + yi + zj + wk) =


x y z w
−y x w −z
−z −w x y
−w z −y x


for x, y, z, w ∈ R. The map ρ : H → M4(R) induces a map ρ̄ : Mn(H) → M4n(R) by ρ̄(aij) =

(ρ(aij)) for (aij) ∈ Mn(H). Now we obtain

Ck,l(SO) = {ρ̄(A) ⊕ B ∈ SO(4k + l) |A ∈ Sp(k), B ∈ SO(l)}. (2.1)

Summarizing the above observation on Ck,l(G), we get:

Proposition 2.1. There are isomorphisms

Ck,l(Sp) ∼=O(k) × Sp(l)

Ck,l(U) ∼=U(k) × U(l)

Ck,l(SO)∼=Sp(k) × SO(l)

satisfying a commutative diagram:

Ck,l(Sp) c′ //

∼=
²²

Ck,2l(U) r //

∼=
²²

Ck,4l(SO)

∼=
²²

O(k) × Sp(l)
c×c′

// U(k) × U(2l)
q×r

// Sp(k) × SO(4l)

4



We now define a space and a map corresponding to the orbit space and the map Γ in Lemma

2.1 with respect to Sk,l(G). We define a space Xk,l(G) by

Xk,l(G) = G(dk + l)/Ck,l(G)

and a map Γk,l : Sk,l(G) ∧ Xk,l(G) → G(dk + l) by

Γk,l(s, gCk,l(G)) = gsg−1s−1

for s ∈ Sk,l(G), g ∈ G(dk + l). We will identify Sk,l(G) with S3 if there is no confusion. It is

obvious that the inclusions G(dk + l) → G(dk + (l + 1)) and G(dk + l) → G(d(k + 1) + l)

induce the commutative diagram:

S3 ∧ Xk+1,l(G)

Γk+1,l

²²

S3 ∧ Xk,l(G) //oo

Γk,l

²²

S3 ∧ Xk,l+1(G)

Γk,l+1

²²

G(d(k + 1) + l) G(dk + l) //oo G(dk + (l + 1))

(2.2)

By the above observation on Ck,l(SU) and Ck,l(U), we see that there is a diffeomorphism:

Xk,l(SU) ∼= U(2k + l)/Ck,l(U) (2.3)

Note that c′ : Sp(k+l) → SU(2k+2l) and r : SU(k+l) → SO(2k+2l) are homomorphisms which

restrict to surjections Sk,l(Sp) → Sk,2l(SU) and Sk,l(SU) → Sk,2l(SO), respectively. Then they

induce maps c′ : Xk,l(Sp) → Xk,2l(SU) and r : Xk,l(SU) → Xk,2l(SO) satisfying a commutative

diagram:

S3 ∧ Xk,l(Sp)
1∧c′ //

Γk,l

²²

S3 ∧ Xk,2l(SU)
1∧r //

Γk,2l

²²

S3 ∧ Xk,4l(SO)

Γk,2l

²²

Sp(k + l) c′ // SU(2k + 2l) r // SO(4k + 4l)

(2.4)

We observe a relation between X1,l(G) and a projective space. It follows from Proposition

2.1 that X1,l(Sp) = RP 4l+3 and also that X1,l(SU) is the total space of the unit tangent bundle

of CP l+1. Note that the map ρ : H → M4(R) above induces a homomorphism ρ : Sp(n) →
SO(4n). Then there is a map HP [ l

4
] → X1,l(SO) which is natural with respect to the maps

HP [ l
4
] → HP [ l+1

4
] and X1,l(SO) → X1,l+1(SO). We regard HP [ l

4
] to be a subspace of X1,l(SO) by

this map. Put Γ′
1,l to be the restriction of Γ1,l : S3∧X4,l(SO) → SO(4+l) onto HP [ l

4
] ⊂ X4,l(SO).

Then we have an obvious commutative diagram:

S3 ∧ HP [ l
4
] //

Γ′
1,l

²²

S3 ∧ HP [ l+1
4

]

Γ′
1,l+1

²²

SO(4 + l) // SO(5 + l)

(2.5)
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We next consider the map Γk,l when l tends to ∞. Put Xk,∞(G) = colim
l

Xk,l(G). Then, by

(2.2), we have a map

colim
l

Γk,l : S3 ∧ Xk,∞(G) → G(∞).

which we denote by Now for G = Sp, SO, there is a principal bundle

H(k) → G(dk + l)/G(l) → Xk,l(G)

by Proposition 2.1 where G(dk + l)/G(l) is (4l + 2)-connected and (l− 1)-connected according

as G = Sp, SO. By Proposition 2.1 and (2.3), we also have a principal bundle

U(k) → U(2k + l)/U(l) → Xk,l(SU)

in which U(2k + l)/U(l) is 2l-connected. Then it follows that there is a homotopy equivalence

Xk,∞(G) ' BH(k)

and thus we obtain a map

Γk,∞ : S3 ∧ BH(k) → G(∞).

Moreover, by Proposition 2.1 and (2.4), we get:

Proposition 2.2. There is a homotopy commutative diagram:

S3 ∧ BO(k)
1∧c //

Γk,∞
²²

S3 ∧ BU(k)
1∧q

//

Γk,∞
²²

S3 ∧ BSp(k)

Γk,∞
²²

Sp(∞) c′ // SU(∞) r // SO(∞)

Note that, by (2.5), we also have a map Γ′
1,∞ : S3 ∧ HP∞ → SO(∞) which coincides with

the map Γ1,∞ : S3 ∧ BSp(1) → SO(∞).

We see from (2.2) that Γk,∞ satisfies a homotopy commutative diagram

S3 ∧ BH(k) //

Γk,∞
²²

S3 ∧ BH(k + 1)

Γk+1,∞
²²

G(∞) G(∞)

(2.6)

where the top horizontal arrow is induced from the inclusion H(k) → H(k + 1). Then we get

a map

Γ∞,∞ = colim
k

Γk,∞ : S3 ∧ BH(∞) → G(∞).

Let µ : G(n) × G(n) → G(2n) be an inclusion such as by µ(A,B) = A ⊕ B for A,B ∈ G(n).

Then µ induces a map Xk,l(G) × Xk,l(G) → X2k,2l(G), denoted by the same symbol µ, which
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yields the standard H-space structure on BH(∞) ' X∞,∞(G). Moreover, the map µ satisfies

a commutative diagram

S3 ∧ (Xk,l(G) ×Xk,l(G))
1∧µ

//

∆
²²

S3 ∧ X2k,2l(G)

Γ2k,2l

²²

(S3 ∧ Xk,l(G)) × (S3 ∧ Xk,l(G))

Γk,l×Γk,l

²²

G(dk + l) × G(dk + l)
µ

// G(2dk + 2l)

where ∆ is defined by ∆(s, x, y) = (s, x, s, y) for s ∈ S3, x, y ∈ Xk,l(G). Let ad : [ΣX,Y ] ∼=
[X, ΩY ] denote the adjoint congruence. Then we have established:

Lemma 2.2. The map ad3Γ∞,∞ : BH(∞) → Ω3
0G(∞) is an H-map.

We will show that the image of ad3Γ1,l in homology generates the Pontrjagin ring of

Ω3
0G(dk + l) in a range, which is an analogue of the generating variety for a loop space of

a Lie group, and that the map ad3Γ∞,∞ yields Bott periodicity.

3 Cohomology calculation for Γ1,l

In this section, we give a cohomology calculation for the map Γ1,l and Γ′
1,l. We first consider the

case G = SO. In this case, we calculate Γ′
1,l in cohomology instead of Γ1,l since the cohomology

of X1,l(SO) is complicated as is seen in [14].

Proposition 3.1. For l ≥ 4, the map (Γ′
1,l)

∗ : H∗(SO(4 + l); Z/2) → H∗(S3 ∧ HP [ l
4
]; Z/2) is

surjective.

Proof. Recall first that the mod 2 cohomology of SO(4 + l) is given as

H∗(SO(4 + l); Z/2) = Z/2[x1, x3, . . .] for ∗ ≤ 3 + l,

where xi is the suspension of the Stiefel-Whitney class wi+1. Let u3 be a generator of H3(S3; Z/2).

Then, by definition, the inclusion ι : S3 = S1,l(SO) → SO(4+ l) induces the map in cohomology

such as ι∗(x3) = u3.

Let us consider the case l = 12. Let PSO(n) denote the n-dimensional projective orthogonal

group, that is, SO(n) divided by its center. It is well known that

H∗(PSO(16); Z/2) = Z/2[v, x̄1, x̄3, x̄5, x̄7] for ∗ ≤ 7
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where |v| = 1 and π∗(x̄i) = xi for the projection π : SO(16) → PSO(16). Moreover, we see

from [4] that the Hopf algebra structure of H∗(PSO(16); Z/2) is given as

φ̄∗(v) = 0, φ̄∗(x̄i) =
i∑

j=1

aijx̄j ⊗ vi−j

for i = 1, 3, 5, 7 in which a53 = 0, a73 = 1, where φ̄ stands for the reduced comultiplication. Let

γ : PSO(16) ∧ PSO(16) → PSO(16) be the reduced commutator map and let γ̃ : SO(16) ∧
PO(16) → SO(16) be a lift of γ. Then by a straightforward calculation, we have

γ̃∗(x7) = u3 ⊗ v4.

On the other hand, since the center of SO(16) is included in C1,12(SO), we have the projection

PSO(16) → X1,12(SO) satisfying a commutative diagram

SO(16) //

π

²²

SO(16)/SO(12)

²²

Sp(4)/Sp(3)rc′oo

²²

PSO(16) //

²²

X1,12(SO)

²²

HP 3oo

²²

B(Z/2) // BSp(1) BSp(1)

where Z/2 is the center of Sp(1). Then we see that a generator x of H4(X1,12(SO); Z/2) satisfies

π∗(x) = v4, (rc′)∗(x) = q,

where q is a generator of H4(HP n; Z/2). Now we have a commutative diagram:

S3 ∧ PSO(16) //

γ̃

²²

S3 ∧ X1,12(SO)

Γ1,12

²²

S3 ∧ HP 3oo

Γ′
1,12

²²

SO(16) SO(16) SO(16)

Then we obtain

(Γ′
1,12)

∗(x7) = u3 ⊗ q.

By (2.5), we have established

(Γ′
1,l)

∗(x7) = u3 ⊗ q. (3.1)

By the Wu formula, we have

Sq4x4i−1 = (i − 1)x4i+3, Sq8x4i−1 =

(
i − 1

2

)
x4i+7

in H∗(SO(4 + l); Z/2) for ∗ < 4 + l. Then, applying this to (3.1), the proof is completed.
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Proposition 3.2. For i > 0, the map Γ∗
1,l : H4i+3(Sp(1 + l); Z/2) → H4i+3(S3 ∧ RP 4l+3; Z/2)

is surjective.

Proof. Let w and q be generators of H1(RP∞; Z/2) and H4(HP∞; Z/2), respectively. Then

the map qc : RP∞ → HP∞ induces (qc)∗(q) = w4 in cohomology. Recall that the mod 2

cohomology of Sp(n) is given as

H∗(Sp(n); Z/2) = Λ(y3, y7, . . . , y4n−1)

where y4i−1 is the suspension of the modulo 2 reduction of the symplectic Pontrjagin class qi.

Then we have (rc′)∗(x4i−1) = y4i−1 here we use the same notation for the mod 2 cohomology

of SO(∞) as in the proof of Proposition 3.1. Then, for l = ∞, the proposition follows from

Proposition 3.1 and (2.2). Thus the proof is completed by (2.2).

Let X〈n〉 denote the n-connective cover of a path-connected space X. Then, in general, any

map f : S3 ∧ A → X with A path-connected lifts to X〈3〉 which we denote by f̃ .

Proposition 3.3. Any lift Γ̃1,∞ : S3 ∧ CP∞ → (SU(∞))〈3〉 of Γ1,∞ : S3 ∧ CP∞ → SU(∞)

induces an isomorphism Γ̃∗
1,∞ : H5((SU(∞))〈3〉; Z)

∼=−→ H5(S3 ∧ CP∞; Z).

Proof. We will denote the modulo p reduction in cohomology by ρp for a prime p.

The integral cohomology of SU(n) is

H∗(SU(n); Z) = Λ(e3, e5, . . . , e2n−1),

where e2i−1 is the suspension of the Chern class ci. Then, by considering the Serre spectral

sequence of a fibre sequence CP∞ → (SU(∞))〈3〉 q−→ SU(∞), we see that H5((SU(∞))〈3〉; Z) ∼=
Z is generated by ε such that

q∗(e5) = 2ε. (3.2)

Let PSU(n) be the n-dimensional projective unitary group, that is, SU(n) divided by its

center. Let p be an odd prime. In [4], it is shown that

H∗(PSU(pr); Z/p) = Z/p[v]/(vpr

) ⊗ Λ(ē1, ē3, . . . , ē2pr−1)

where |v| = 2 and π̄∗(ēi) = ρp(ei) for the projection π̄ : SU(pr) → PSU(pr). Moreover, for the

reduced comultiplication φ̄, we have

φ̄(ē5) = a1ē3 ⊗ v + a2ē1 ⊗ v2

for a1, a2 ∈ (Z/p)×. Let c and u3 be generators of H2(CP∞; Z) and H3(S3; Z) respectively.

Then, as in the proof of Proposition 3.1, we see that

Γ∗
1,∞(ρp(e5)) = aρp(u3 ⊗ c)
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for a ∈ (Z/p)×. Note that the above equation holds for any odd prime p. Then we have

obtained, in the integral cohomology, that

Γ∗
1,∞(e5) = ±2bu3 ⊗ c

for some non-negative integer b, and thus by (3.2),

Γ̃∗
1,∞(ε) = ±2b−1u3 ⊗ c

which implies that b is positive. Since H5(S3∧RP 2; Z) ∼= Z/2, it follows from Lemma 3.2 below

and (2.2) that Γ̃1,∞(ρ2(ε)) 6= 0 in the mod 2 cohomology, which yields b = 1. Thus the proof is

done.

Lemma 3.1. Let θ : RP 2 → SO(6) and ι : S3 = S1,2(SO) → SO(6) be the inclusions. Then the

Samelson product 〈ι, θ〉 is essential.

Proof. By the adjointness of Whitehead products and Samelson products, we show that the

Whitehead product of ad−1ι : S4 → BSO(6) and ad−1θ : ΣRP 2 → BSO(6) is essential. Suppose

now that [ad−1ι, ad−1θ] = 0. Then there exists a map κ : S4 × ΣRP 2 → BSO(6) satisfying the

homotopy commutative diagram:

S4 ∨ ΣRP 2ad−1ι∨ad−1θ //

²²

BSO(6)

S4 × ΣRP 2 κ // BSO(6)

Let w and u4 be generators of H1(RP 2; Z/2) and H4(S4; Z/2), respectively. Then, by definition,

we have κ∗(w3) = 1 ⊗ Σw2 and κ∗(w4) = u4 ⊗ 1, where wi is the Stiefel-Whitney class. On the

other hand, it follows from the Wu formula that Sq3w4 = w3w4. Thus we obtain

0 = Sq3(u4 ⊗ 1) = Sq3κ∗(w4) = κ∗(Sq3w4) = κ∗(w3w4) = u4 ⊗ Σw2 6= 0

which is a contradiction. Therefore we have established the Whitehead product [ad−1ι, ad−1θ]

is essential.

Recall that there is an isomorphism SU(4) ∼= Spin(6). Since the center of SU(4) ∼= Spin(6)

is included in C1,2(SU), there is a projection π : SO(6) → X1,2(SU).

Lemma 3.2. Let θ : RP 2 → SO(6) be the inclusion and let λ : S3 ∧ RP 2 → (SU(4))〈3〉 be the

composite:

S3 ∧ RP 2 1∧θ−−→ S3 ∧ SO(6)
1∧π−−→ S3 ∧ X1,2(SU)

Γ̃1,2−−→ (SU(4))〈3〉

Then λ∗(ε) 6= 0, where ε is a generator of H5((SU(4))〈3〉; Z) ∼= Z as above.
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Proof. Since S3 ∧RP 2 is 3-connected, the projection (SO(6))〈3〉 → SO(6) induces an injection

[S3 ∧RP 2, (SO(6))〈3〉] → [S3 ∧RP 2, SO(6)] of pointed homotopy set. By Lemma 3.1, we know

that the Samelson product 〈ι, θ〉 is essential, and then so is its lift S3 ∧ RP 2 → (SO(6))〈3〉.
Let γ̃ : S3 ∧ SO(6) → (SO(6))〈3〉 be a lift of the restriction of the reduced commutator of

SO(6) to S3 ∧ SO(6) = S1,2(SO) ∧ SO(6). Then we have a homotopy commutative diagram:

S3 ∧ SO(6)
1∧π //

γ̃

²²

S3 ∧ X1,2(SU)

Γ̃1,2

²²

(SO(6))〈3〉 (SU(4))〈3〉

Thus we have established that λ is essential. Now since S3 ∧ RP 2 is of dimension 5 and

(SU(4))〈3〉 is 4-connected, it follows from the J.H.C. Whitehead theorem that λ∗(ε) 6= 0.

4 Generating variety for Ω3
0G(n)

The aim of this section is to prove that it holds for Ω3
0G(d + l) by the map Γ1,l and Γ′

1,l in the

stable range of Ω3
0G(d + l), the generating variety argument which is analogous to single loop

spaces of Lie groups in [6]. The proofs are done by a similar calculation in [16].

Theorem 4.1. For ∗ ≤ l, the Pontrjagin ring H∗(Ω
3
0SO(4 + l); Z/2) is a polynomial ring

generated by the image of (ad3Γ′
1,l)∗ : H∗(HP [ l

4
]; Z/2) → H∗(Ω

3
0SO(4 + l); Z/2).

Proof. We first prove the case l = ∞. We will use the same notation for the mod 2 cohomology

of SO(∞) as in the proof of Proposition 3.1. Then, in particular, we have

Sq2i−2x2i−1 = x4i−3, Sq4i−3x4i−1 = 0.

Let q and un be generators of H4(HP∞; Z/2) and Hn(Sn; Z/2) as above, respectively . Then

it follows from Proposition 3.1 that

(Γ′
1,∞)∗(x4i−1) = u3 ⊗ qi−1.

Since π1(SO(∞)) ∼= Z/2, we have

H∗((SO(∞))〈1〉; Z/2) = Z/2[π∗(x3), π
∗(x5), π

∗(x7), . . .],

where π : (SO(∞))〈1〉 → SO(∞) denotes the projection. Then, by the Borel transgression

theorem, we have

H∗(Ω0SO(∞); Z/2) = ∆(y2, y4, y6, . . .), (adΓ′
1,∞)∗(y4i−2) = u2 ⊗ qi−1

11



and

y2
2i−2 = Sq2i−2y2i−2 = y4i−4, Sq4i−3y4i−2 = 0,

where yi is the suspension of xi+1 and ∆(a1, a2, . . .) stands for the simple system of generators

{a1, a2, . . .}. It is rewritten as

H∗(Ω0SO(∞); Z/2) = Z/2[y2, y6, y10, . . .].

Then it follows from the Borel transgression theorem that

H∗(Ω2
0SO(∞); Z/2) = ∆(z1, z5, z9, . . .), (ad2Γ′

1,∞)∗(z4i−3) = u1 ⊗ qi−1

and

z2
4i−3 = Sq4i−3z4i−3 = 0,

where zi is the suspension of yi+1. Namely, we have

H∗(Ω2
0SO(∞); Z/2) = Λ(z1, z5, z9, . . .).

Now we take the dual Hopf algebra of H∗(Ω2
0SO(∞); Z/2) to get

H∗(Ω
2
0SO(∞); Z/2) = Λ(z]

1, z
]
5, z

]
9, . . .), (ad2Γ′

1,∞)∗(u
]
1 ⊗ (qi−1)]) = z]

4i−3,

where x] means the Kronecker dual of x. Since π3(SO(∞)) ∼= Z, we have

H∗((Ω
2
0SO(∞))〈1〉; Z/2) = Λ(s5, s9, s13, . . .),

where si is defined by π′
∗(si) = z]

i for the projection π′ : (Ω2
0SO(∞))〈1〉 → Ω2

0SO(∞). Then, by

the Borel transgression theorem, we have, for ∗ < l,

H∗(Ω
3
0SO(∞); Z/2) = Z/2[t4, t8, t12, . . .], (ad3Γ′

1,∞)∗((q
i−1)]) = t4i−4

in which si+1 is the transgression image of ti, and therefore the proof is completed.

Note that the inclusion SO(4 + l) → SO(∞) is a (4 + l)-equivalence. Then the inclusion

Ω3
0SO(4 + l) → Ω3

0SO(∞) is a (1 + l)-equivalence, and thus the theorem follows from (2.5).

In proving the generating variety argument for Ω3
0Sp(1 + l), we will use:

Lemma 4.1 (S. Araki and T. Kudo [1]). Let X be a simply connected homotopy associative

H-space. If H∗(X; Z/2) = Z/2[x1, x2, . . .] and each xi is transgressive, then we have

H∗(ΩX; Z/2) = Z/2[y0
1, y

1
1, . . . , y

0
2, y

1
2, . . .]

where yl
k is the transgression image of x2l

k .
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Theorem 4.2. For ∗ ≤ 4l + 2, the Pontrjagin ring H∗(Ω
3
0Sp(1 + l); Z/2) is a polynomial ring

generated by the image of (ad3Γ1,l)∗ : H∗(RP 4l+3; Z/2) → H∗(Ω
3
0Sp(1 + l); Z/2).

Proof. We first prove the case l = ∞. We will use the same notation for the mod 2 cohomology

of Sp(1 + l) as in the proof of Proposition 3.2. Let un and w be generators of Hn(Sn; Z/2) and

H1(RP∞; Z/2), respectively, as well as above. Then it follows from Proposition 3.2 that

Γ∗
1,∞(y4i−1) = u3 ⊗ w4i−4.

Now we take the dual Hopf algebra of H∗(Sp(∞); Z/2) so that

H∗(Sp(∞); Z/2) = Λ(y]
3, y

]
7, . . .), (Γ1,∞)∗(u

]
3 ⊗ (w4i−4)]) = y]

4i−1.

Then, by the Borel transgression theorem, we get

H∗(ΩSp(∞); Z/2) = Z/2[z2, z6, . . .], (adΓ1,∞)∗(u
]
2 ⊗ (w4i−4)]) = z4i−2

in which zi is the transgression image of yi+1.

By Lemma 5.1 in the next section, Theorem 4.1 implies the map

(ad3Γ∞,∞)∗ : H∗(BSp(∞); Z/2) → H∗(Ω
3
0SO(∞); Z/2)

is an isomorphism. Then since BSp(∞) and Ω3
0SO(∞) are of finite type, we deduce that the

map (ad3Γ∞,∞)(2) : BSp(∞)(2) ' Ω3
0SO(∞)(2) is a homotopy equivalence, where −(2) means the

2-localization in the sense of Bousfield and Kan [8]. In particular, we can consider the action

of the Kudo-Araki operation Q4i on q]
i ∈ H∗(BSp(∞); Z/2), where qi is the mod 2 reduction of

the symplectic Pontrjagin class. (See [11].) Recall that in H∗(BSp(∞); Z/2), we have

q]
i = (q]

1)
i.

Then, in particular,

Q4iq]
i = (q]

i)
2 = (q]

1)
2i = q2i.

Since Q4i commutes with the transgression, we obtain

Q4iz4i−2 = z8i−2.

Then it follows from the Nishida relation Sq2
∗Q

s =
(

s−2
2

)
Qs−2 + Qs−1Sq1

∗ that

Sq2
∗z8i−2 = z2

4i−2,

where Sqk
∗ denotes the dual of Sqk. (See [11].) Since (adΓ1,∞)∗(u

]
2 ⊗ (w4i−4)]) = z4i−2 and

Sq2
∗(w

4i)] = (w4i−2)], we have established

(adΓ1,∞)∗(u
]
2 ⊗ (w2i−2)]) = z2i.

13



Applying Lemma 4.1, we get

H∗(Ω
2Sp(∞); Z/2) = Z/2[s1, s3, . . .], (ad2Γ1,∞)∗(u

]
1 ⊗ (w2i−2)]) = s2i−1

where s2m(4n−2)−1 is the transgression image of z2m

4n−2. Note that we can consider the operation

Qi−1 and Qi on zi. By the Nishida relation Sq1
∗Q

s = (s − 1)Qs−1, we see that, for m ≥ 1,

Sq1
∗z

2m

4n−2 = Sq1
∗Q

2m−1(4n−2)z2m−1

4n−2 = Q2m−1(4n−2)−1z2m−1

4n−2

and then

Sq1
∗s2m(4n−2)−1 = s2

2m−1(4n−2)−1.

Thus we can deduce that

(ad2Γ1,∞)∗(u
]
1 ⊗ (wi−1)]) = si,

where we put s2i = s2
i .

Since π3(Sp(∞)) ∼= Z, we have

H∗((Ω
2Sp(∞))〈1〉; Z/2) = Z/2[s̄2, s̄3, s̄5, . . .]

in which s̄i is defined by π∗(s̄i) = si for the projection π : (Ω2Sp(∞))〈1〉 → Ω2Sp(∞). Then,

by Lemma 4.1, we obtain

H∗(Ω
3
0Sp(∞); Z/2) = Z/2[t1, t2, t3, . . .], (ad3Γ1,∞)∗((w

i−1)]) = ti−1

and thus the proof is done.

Since the inclusion Sp(1+l) → Sp(∞) is an (4l+6)-equivalence, the inclusion Ω3
0Sp(1+l) →

Ω3
0Sp(∞) is an (4l + 3)-equivalence. Therefore the proof is completed by (2.2).

We next consider the case G = SU. Only in this case, we will use a result related with Bott

periodicity which is an easy consequence of [20].

Lemma 4.2. Let a be a generator of H2(Ω3
0SU(∞); Z) ∼= Z. Then the integral homology of

Ω3
0SU(∞) is

H∗(Ω
3
0SU(∞); Z) = Z[b2, b4, . . .], b2i = (ai)].

Theorem 4.3. For ∗ ≤ 2l, the Pontrjagin ring H∗(Ω
3
0SU(∞); Z) is a polynomial ring generated

by the image of (ad3Γ̃1,l)∗ : H∗(X1,l(SU); Z) → H∗(Ω
3
0SU(2 + l); Z).

Proof. The case l = ∞ follows from Proposition 3.3 and Lemma 4.2. One can easily verify

that the inclusion Ω3
0SU(2 + l) → Ω3

0SU(∞) and the natural map X1,l(SU) → X1,∞(SU) are

(2l + 4)-equivalences. Thus the theorem follows from (2.2).
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5 Bott periodicity

In this section, we prove that the map ad3Γ∞,∞ : BH(∞) → Ω3
0G(∞) is a homotopy equiv-

alence. Notice here that we have not used any result concerning real and symplectic Bott

periodicity. We have only used the result of Toda [20] to get the ring structure of Ω3
0SU(∞) in

the last section. Then our result provides a new proof for real and symplectic Bott periodicity.

We start with an easy algebraic lemma. Let V be a graded free module over a PID. As

usual, we will call V of finite type if, in each dimension, V is finitely generated. We will denote

the free commutative graded algebra generated by V by ΛV . Then we can easily see:

Lemma 5.1 (Kono and Tokunaga [17]). Let V and W be of finite type graded free modules

over a PID R such that V ∼= W , and let U be a graded module over R. Given a graded algebra

map f : ΛV → ΛW and a graded module map g : U → ΛV . If the image of f ◦ g : U → ΛW

generates ΛW , then f is an isomorphism.

Now we prove our main theorem.

Theorem 5.1. The map ad3Γ∞,∞ : BH(∞) → Ω3
0G(∞) is a homotopy equivalence.

Proof. We first prove the case G = SU. By Lemma 2.2, Theorem 4.3 and Lemma 5.1 together

with the homotopy commutative diagram (2.6), we see that the map ad3Γ∞,∞ : BU(∞) →
Ω3

0SU(∞) induces an isomorphism in the integral homology. Then, by the J.H.C. White-

head theorem, we obtain that ad3Γ∞,∞ is a homotopy equivalence. Thus, in particular, from

π∗(BU(2)) is for ∗ ≤ 4, we deduce:

π∗(BU(∞)) ∼=

{
Z ∗ = 2, 4, . . .

0 ∗ = 1, 3, . . .
(5.1)

Note here that we do not need to use Bott periodicity of BU(∞).

We next consider the case G = SO. We may assume Γ′
1,∞ = Γ1,∞ as noted above. Then it

follows from Lemma 2.2, Theorem 4.1, Lemma 5.1 and (2.6) that the map ad3Γ∞,∞ : BSp(∞) →
Ω3

0SO(∞) induces an isomorphism in the mod 2 homology. On the other hand, we have qc′ =

1 : BSp(∞) → BSp(∞) and rc = 2 : BSO(∞) → BSO(∞). Then it follows from (5.1) that

the homotopy groups of BSp(∞) and Ω3
0SO(∞) are odd torsion free. Then, by considering the

rational cohomology of BSp(∞) and BSO(∞), we obtain

π∗(BSp(∞)) ⊗ Z[1
2
] ∼=

{
Z[1

2
] ∗ = 4, 8, . . .

0 ∗ 6= 4, 8, . . .

and

π∗(Ω
3
0SO(∞)) ⊗ Z[1

2
] ∼=

{
Z[1

2
] ∗ = 4, 8, . . .

0 ∗ 6= 4, 8, . . . .
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This implies that the maps c′∗ : π∗(BSp(∞))⊗Z[1
2
] → π∗(BU(∞))⊗Z[1

2
] and c∗ : π∗(Ω

3
0SO(∞))⊗

Z[1
2
] → π∗(Ω

3
0SU(∞)) ⊗ Z[1

2
] are split monomorphisms. Thus since ad3Γ∞,∞ : BU(∞) →

Ω3
0SU(∞) is a homotopy equivalence as above, the map (ad3Γ∞,∞)∗ : π∗(BSp(∞)) ⊗ Z[1

2
] →

π∗(Ω
3
0SO(∞)) ⊗ Z[1

2
] is an isomorphism by Proposition 2.2. On the other hand, we can apply

Lemma 5.1 to the map ad3Γ∞,∞ : BSp(∞) → Ω3
0SO(∞) in the mod 2 homology by Lemma

2.2 and Theorem 4.1. Then we obtain the map ad3Γ∞,∞ : BSp(∞) → Ω3
0SO(∞) induces an

isomorphism in the mod 2 homology. Summarizing, we have established that this map is a

homology equivalence and therefore by a generalized J.H.C. Whitehead theorem [12], the proof

is completed.

The case G = Sp is quite similar to the case G = SO.

Corollary 5.1. Let dk,l = min{2k + 1, 2l + 1}, min{k, 4l + 3}, min{4k + 3, l} according as

G = SU, Sp, SO. Then the map ad3Γk,l : Xk,l(G) → Ω3
0G(dk + l) is a dk,l-equivalence.

Proof. Let ak = 2k + 1, k, 4k + 3 according as G = SU, Sp, SO. Then it is easy to see that the

projection BH(k) → BH(∞) is an ak-equivalence. By definition, there is a principal bundles

H(k) → G(dk + l)/G(l) → Xk,l(G)

for G = Sp, SO and

U(k) → U(2k + l)/U(l) → Xk,l(SU).

Let bk,l = 2l+1, 4l+3, l according as G = SU, Sp, SO. Then it follows from the above principal

bundles that the composite of the inclusion Xk,l(G) → Xk,∞(G) and the homotopy equivalence

Xk,∞(G) ' BH(k) is a bk,l-equivalence. Let ck,l = 4k + 2l − 3, 4k + 4l − 1, 4k + l − 4 according

as G = SU, Sp, SO. Then the inclusion Ω3
0G(dk + l) → Ω3

0G(∞) is a ck,l-equivalence. Now let

us consider a homotopy commutative diagram:

Xk,l(G) //

ad3Γk,l

²²

BH(k) //

ad3Γk,∞
²²

BH(∞)

ad3Γ∞,∞
²²

Ω3
0G(dk + l) // Ω3

0G(∞) Ω3
0G(∞)

Then it follows from Theorem 5.1 that the map ad3Γk,l : Xk,l(G) → Ω3
0G(dk+l) is a min{ak, bk,l, ck,l}-

equivalence. Thus the proof is completed.

6 Applications to instanton moduli spaces

In this section, we give applications of the results obtained so far to the homotopy types of

instanton moduli spaces Mk(G).
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Recall from Lemma 2.1 that the map Γk,l : S3 ∧ Xk,l(G) → G(dk + l) was constructed

from the moduli space of G(dk + l)-instantons on S4. In particular, Xk,l(G) is a subspace of

Mk(G(dk+ l)). We denote the inclusion Xk,l(G) → Mk(G(dk+ l)) by ik,l. Then, by definition,

we have

ad3Γk,l = jk,l ◦ ik,l (6.1)

where jk,l : Mk(G(dk + l)) → Ω3
0G(dk + l) is the inclusion. We also have a commutative

diagram:

Xk,l(G) //

ik,l

²²

Xk,l+1(G)

ik,l+1

²²

Mk(G(dk + l)) // Mk(G(dk + l + 1))

Here the horizontal arrows are induced from the inclusion G(dk + l) → G(dk + l + 1). Then

we have a map

colim
l

ik,l : Xk,∞(G) → colim
l

Mk(G(dk + l))

which we denote by ik,∞ : Xk,∞(G) → Mk(G(∞)).

Proposition 6.1. The map ik,∞ is a homotopy equivalence.

Proof. We first prove the case G = SU, SO. Recall from [18] that there is a homotopy equiv-

alence Mk(G(∞)) ' BH(k). On the other hand, we know that Xk,∞(G) ' BH(k). Then we

have H∗(Xk,∞(G); Z) ∼= H∗(Mk(G(∞)); Z) as abstract rings. Note that H∗(Xk,∞(G); Z) is a

polynomial ring. By Corollary 5.1, we see that H∗(Xk,∞(G); Z) is generated by Im(ad3Γk,∞)∗.

Therefore, by Lemma 5.1 and (6.1), the proof is completed.

We next prove the case G = Sp. By Corollary 5.1, the map (ad3Γk,∞)∗ : H∗(Ω3
0Sp(∞) Z/2) →

H∗(Xk,∞(G); Z/2) is an isomorphism for ∗ ≤ k. Then, in particular, it follows from (6.1) that

the map (ik,∞)∗ : π1(Xk,∞(G)) → π1(Mk(G(∞))) is an isomorphism, where both π1Xk,∞(G)

and π1(Mk(G(∞))) are isomorphic to Z/2. Since both Xk,∞〈1〉 and Mk(G(∞))〈1〉 have the

homotopy type of BSO(k), we can see the map (ik,∞)〈1〉 : Xk,∞〈1〉 → Mk(G(∞))〈1〉 induces

an isomorphisms in the cohomology with the coefficients Z/2 and Z[1
2
] quite analogously to

the above case. Then the map (ik,∞)〈1〉 is a homology equivalence, and hence a homotopy

equivalence. Therefore the map ik,∞ is a homotopy equivalence.

We estimate a range that the map ik,l : Xk,l(SU) → Mk(SU(dk + l)) is a homotopy equiva-

lence.

Theorem 6.1. The map ik,l : Xk,l(G) → Mk(G(dk + l)) is a min{2k + 1, 2l + 1}-equivalence.
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Proof. In [15], it is shown that the map Mk(G(dk + l)) → Mk(G(∞)) induced from the

inclusion G(dk + l) → G(dk + l + 1) is a (2k + 1)-equivalence. On the other hand, the map

Xk,l(G) → Xk,∞(G) induced from the inclusion G(dk + l) → G(dk + l + 1) is a (2l + 1)-

equivalence as is seen in the proof of Corollary 5.1. Then the theorem follows from (2.2) and

Proposition 6.1.
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