Generating varieties, Bott periodicity and instantons

Daisuke Kishimoto

January 22, 2010

Abstract

Let G be the classical group and let $\mathcal{M}_{k}(G)$ be the based moduli space of G-instantons on S^{4} with instanton number k. It is known that $\mathcal{M}_{k}(G)$ yields real and symplectic Bott periodicity, however an explicit geometric description of the homotopy equivalence has not been known. We consider certain orbit spaces in $\mathcal{M}_{k}(G)$ and show that the restriction of the inclusion of $\mathcal{M}_{k}(G)$ into the moduli space of connections, which, in turn, is explicitly described by the commutator map of G. We prove this restriction satisfies a triple loop space version of the generating variety argument of Bott [6], and it also gives real and symplectic Bott periodicity. This also gives a new proof of real and symplectic Bott periodicity.

1 Introduction

Let G be a compact connected simple Lie group. Then there is an isomorphism $\pi_{3}(G) \cong$ $\pi_{4}(B G) \cong \mathbb{Z}$. We will fix an isomorphism $\pi_{3}(G) \cong \mathbb{Z}$. Then principal G-bundles over S^{4} are classified by $\mathbb{Z}=\pi_{3}(G)$, and denote by P_{k} the principal G-bundle over S^{4} corresponding to $k \in \mathbb{Z}$. Let $\mathcal{C}_{k}(G)$ be the based moduli space of connections on P_{k}. Then we have a natural homotopy equivalence

$$
\mathcal{C}_{k}(G) \simeq \Omega_{k}^{3} G
$$

where $\Omega_{k}^{3} G$ stands for the path component of $\Omega^{3} G$ corresponding to $k \in \mathbb{Z}=\pi_{3}(G)$. We will identify $\mathcal{C}_{k}(G)$ with $\Omega_{k}^{3} G$ by this homotopy equivalence. Let $\mathcal{M}_{k}(G)$ be the based moduli space of instantons on P_{k}. Then we have a map

$$
\theta_{k}: \mathcal{M}_{k}(G) \rightarrow \Omega_{0}^{3} G
$$

defined by the composite of the inclusion $\mathcal{M}_{k}(G) \rightarrow \Omega_{k}^{3}(G) \simeq \mathcal{C}_{k}(G)$ and the homotopy equivalence $\Omega_{k}^{3} G \simeq \Omega_{0} G$, the shift by $-k \in \mathbb{Z}=\pi_{3}(G)$.

The topology of the map θ_{k} was first studied by Atiyah and Jones [3], and, later, it was proved by Boyer, Hurtubise, Mann and Milgram [9], Kirwan [15] and Tian [19] that the map θ_{k} is a homotopy equivalence in a range, which is known as the Atiyah-Jones theorem. As a consequence of this result, Tian [19] showed that the colimit of the map θ_{k} yields real and symplectic

Bott periodicity. However, an explicit geometric description of the homotopy equivalence is not known While Bott periodicity was given by a map explicitly defined by the commutator maps of the classical groups [7]. In [10], it is shown that the map θ_{k} has some relation with the commutator map of G when $k=1$. Recall that Bott [6] also used the commutator maps to study the topology of loop spaces of Lie groups. Exploiting the above result of [10] in connection with the classical result of Bott [6], Kamiyama [13] studied a triple loop space analogue of generating varieties of Bott [6].

We will give a mild generalization of the above result of [10] for arbitrary k. Using this, we prove triple loop space version of the generating variety argument [6] in a sense somewhat different from [13], and also prove Bott periodicity. This yields a new proof of real and symplectic Bott periodicity. We will give applications of this result to the homotopy types of $\mathcal{M}_{k}(G)$.

2 Subgroups of classical groups isomorphic with $\mathrm{SU}(2)$

Let G be a compact, connected, simple Lie group with a fixed isomorphism $\pi_{3}(G) \cong \mathbb{Z}$. Note that G acts on $\mathcal{M}_{k}(G)$ via the action of the basepoint free gauge group of P_{k} on $\mathcal{M}_{k}(G)$. As is shown in [10], there is an orbit of this action for $k=1$ such that the restriction of θ_{1} : $\mathcal{M}_{1}(G) \rightarrow \Omega_{0}^{3} G$ is presented by the commutator map of G. By putting additional assumption, we can prove this for arbitrary k by essentially the same way in [10] as follows.

Lemma 2.1. Suppose that there exists a subgroup H of G isomorphic to $\operatorname{SU}(2) \approx S^{3}$ such that the inclusion $\iota: H \hookrightarrow G$ represents $k \in \mathbb{Z}=\pi_{3}(G)$. Then there exists $\omega \in \mathcal{M}_{k}(G)$ satisfying:

1. The orbit space $G \cdot \omega$ is homeomorphic with $G / C(H)$, where $C(H)$ stands for the centralizer of H.
2. Let Γ denote the composite:

$$
G / C(H) \approx G \cdot \omega \hookrightarrow \mathcal{M}_{k}(G) \xrightarrow{\theta_{k}} \Omega_{0}^{3} G
$$

Then we have

$$
\Gamma(g C(H)) \simeq g \iota(h) g^{-1} \iota(h)^{-1}
$$

for $g \in G, h \in H$.
Proof. Let α be an asymptotically flat connection on P_{k}. We regard S^{4} as $\mathbb{R}^{4} \cup\{\infty\}$. Recall from [3] that the homotopy equivalence $\mathcal{C}_{k}(G) \stackrel{\cong}{\leftrightharpoons} \Omega_{0}^{3} G$ takes $\alpha \in \mathcal{M}_{k}(G)$ into its 'pure gauge' $\hat{\alpha}: S^{3} \rightarrow G$ at $\infty \in S^{4}$ normalized as $\hat{\alpha}(*)=e$, where $*$ and e are the basepoint of S^{3} and unity of G, respectively. (See [3].) The action of the basepoint free gauge group of P_{k} is locally
the conjugation by G. Then the map θ_{k} is G-equivariant under the action of G on $\Omega_{0}^{3} G$ given by $g \cdot \lambda(x)=g \lambda(x) g^{-1}$ for $g \in G, \lambda \in \Omega_{0}^{3} G, x \in S^{3}$.

Let P be a principal $\mathrm{SU}(2)$-bundle over S^{4} represented by $1 \in \mathbb{Z} \cong \pi_{3}(\mathrm{SU}(2))$. In [2], an asymptotically flat instanton ϖ whose pure gauge represents $1 \in \mathbb{Z} \cong \pi_{3}(\operatorname{SU}(3))$. Then the proof is completed by putting ω to be the push forward of ϖ by the inclusion $\iota: H \cong \mathrm{SU}(2) \rightarrow G$.

The original form of Bott periodicity [7] is given by such a map Γ in Lemma 2.1 where $\mathrm{SU}(2) \approx S^{3}$ is replaced with $\mathrm{U}(1) \approx S^{1}$. On the other hand, there is known a deep relation between $\mathcal{M}_{k}(G)$ and Bott periodicity as in [15], [18], [19]. Then we expect the map Γ in Lemma 2.1 may yield real and symplectic Bott periodicity which has period 4. Also we expect $G / C(H)$ and Γ in Lemma 2.1 may yield a 3 -fold loop analogue of a generating variety for a loop space of a Lie group, which is already studied by Kamiyama [13] in a slightly different sense, that is, algebras over the Kudo-Araki operations. Then we introduce a family of subgroups of the classical groups which are isomorphic with $\mathrm{SU}(2)$ by which we can prove the above argument.

Hereafter, we put $(\mathbf{G}, \mathbf{H}, d)=(\mathrm{Sp}, \mathrm{O}, 1),(\mathrm{SU}, \mathrm{U}, 2),(\mathrm{SO}, \mathrm{Sp}, 4)$. We will define a family of subgroups $S_{k, l}(\mathbf{G})$ of $\mathbf{G}(d k+l)$ indexed by positive integers k and non-negative integers l. Since the Lie group $\mathbf{G}(d k+l)$ must be simple, we will assume $d k+l>4$ when $\mathbf{G}=\mathrm{SO}$.

Let $\mathbf{c}: \mathrm{O}(n) \rightarrow \mathrm{U}(n), \mathbf{q}: \mathrm{U}(n) \rightarrow \mathrm{Sp}(n), \mathbf{c}^{\prime}: \mathrm{Sp}(n) \rightarrow \mathrm{SU}(2 n)$, and $\mathbf{r}: \mathrm{U}(n) \rightarrow \mathrm{O}(2 n)$ be the canonical inclusions. In order to make things clear, we write the maps \mathbf{c}^{\prime} and \mathbf{r} explicitly as follows. Let $\mathrm{M}_{\mathrm{n}}(\mathbb{K})$ be the set of all square matrices of order n over a field \mathbb{K}. For $A=$ $\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathrm{M}_{n}(\mathbb{C})$ such that $A+B \mathbf{j} \in \mathrm{Sp}(n)$, we put

$$
\mathbf{c}^{\prime}(A+B \mathbf{j})=\left(\mathbf{c}^{\prime}\left(a_{i j}+b_{i j} \mathbf{j}\right)\right)
$$

where $\mathbf{c}^{\prime}(a+\mathbf{j} b)=\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right)$ for $a, b \in \mathbb{C}$. We also put, for $C=\left(c_{i j}\right), D=\left(d_{i j}\right) \in \mathrm{M}_{n}(\mathbb{R})$ such that $C+D \sqrt{-1} \in \mathrm{U}(n)$,

$$
\mathbf{r}(C+D \sqrt{-1})=\left(\mathbf{r}\left(c_{i j}+d_{i j} \sqrt{-1}\right)\right)
$$

where $\mathbf{r}(c+d \sqrt{-1})=\left(\begin{array}{cc}c & -d \\ d & c\end{array}\right)$ for $c, d \in \mathbb{R}$. We denote the matrix $\left(\begin{array}{cc}A & O \\ O & B\end{array}\right)$ by $A \oplus B$. We consider the following family of subgroups of the classical groups isomorphic with $\mathrm{SU}(2) \approx S^{3}$:

$$
\begin{aligned}
& S_{k, l}(\mathrm{Sp})=\left\{\alpha E_{k} \oplus E_{l} \in \mathrm{Sp}(k+l) \mid \alpha \in \mathrm{Sp}(1)\right\} \\
& S_{k, l}(\mathrm{SU})=\left\{A \oplus E_{l} \in \mathrm{SU}(2 k+l) \mid A \in \mathbf{c}^{\prime}\left(S_{k, 0}(\mathrm{Sp})\right)\right\} \\
& S_{k, l}(\mathrm{SO})=\left\{B \oplus E_{l} \in \mathrm{SO}(4 k+l) \mid B \in \mathbf{r c}^{\prime}\left(S_{k, 0}(\mathrm{Sp})\right)\right\}
\end{aligned}
$$

where E_{n} is the identity matrix of order n. We easily see

$$
\mathbf{c}^{\prime}\left(S_{k, l}(\mathrm{Sp})\right)=S_{k, 2 l}(\mathrm{SU}), \mathbf{r}\left(S_{k, l}(\mathrm{SU})\right)=S_{k, 2 l}(\mathrm{SO})
$$

We fix an isomorphism $\pi_{3}(\mathbf{G}(d k+l)) \cong \mathbb{Z}$ such that the inclusion $S_{k, l} \rightarrow \mathbf{G}(d k+l)$ represents $k \in \mathbb{Z}$.

Let $C_{k, l}(\mathbf{G})$ denote the centralizer of $S_{k, l}(\mathbf{G})$ in $\mathbf{G}(d k+l)$. Then we have

$$
C_{k, l}(\mathrm{Sp})=\mathbf{q c}(\mathrm{O}(k)) \oplus \operatorname{Sp}(l)
$$

We also denote by $C_{k, l}(\mathrm{U})$ the centralizer of $S_{k, l}(\mathrm{SU})$ in $\mathrm{U}(d k+l)$. Then we have

$$
C_{k, l}(\mathrm{U})=\left\{A \oplus B \in \mathrm{U}(2 k+l) \mid A=\left(a_{i j} E_{2}\right) \in \mathrm{U}(2 k), B \in \mathrm{U}(l)\right\} .
$$

In order to describe the centralizer $C_{k, l}(\mathrm{SO})$, we give another description of $S_{k, l}(\mathrm{SO})$. Define the action of $\mathrm{Sp}(1) \times \operatorname{Sp}(1)$ on \mathbb{H} by

$$
x \cdot(p, q)=p^{-1} x q
$$

for $(p, q) \in \operatorname{Sp}(1) \times \operatorname{Sp}(1)$ and $x \in \mathbb{H}$. It is well known that this action yields the universal covering homomorphism $\rho: \operatorname{Sp}(1) \times \operatorname{Sp}(1) \cong \operatorname{Spin}(4) \rightarrow \mathrm{SO}(4)$. Then it easily follows that

$$
S_{k, l}(\mathrm{SO})=\{\underbrace{A \oplus \cdots \oplus A}_{k} \oplus E_{l} \mid A \in \rho(1 \times \mathrm{Sp}(1)) \subset \mathrm{SO}(4)\} .
$$

We denote the extension $\mathbb{H} \rightarrow \mathrm{M}_{4}(\mathbb{R})$ of $\left.\rho\right|_{\operatorname{Sp}(1) \times 1}$ ambiguously by the same ρ. Then one can easily verify

$$
\rho(x+y \mathbf{i}+z \mathbf{j}+w \mathbf{k})=\left(\begin{array}{cccc}
x & y & z & w \\
-y & x & w & -z \\
-z & -w & x & y \\
-w & z & -y & x
\end{array}\right)
$$

for $x, y, z, w \in \mathbb{R}$. The map $\rho: \mathbb{H} \rightarrow \mathrm{M}_{4}(\mathbb{R})$ induces a map $\bar{\rho}: \mathrm{M}_{n}(\mathbb{H}) \rightarrow \mathrm{M}_{4 n}(\mathbb{R})$ by $\bar{\rho}\left(a_{i j}\right)=$ $\left(\rho\left(a_{i j}\right)\right)$ for $\left(a_{i j}\right) \in \mathrm{M}_{n}(\mathbb{H})$. Now we obtain

$$
\begin{equation*}
C_{k, l}(\mathrm{SO})=\{\bar{\rho}(A) \oplus B \in \mathrm{SO}(4 k+l) \mid A \in \mathrm{Sp}(k), B \in \mathrm{SO}(l)\} . \tag{2.1}
\end{equation*}
$$

Summarizing the above observation on $\mathbb{C}_{k, l}(\mathbf{G})$, we get:
Proposition 2.1. There are isomorphisms

$$
\begin{aligned}
& C_{k, l}(\mathrm{Sp}) \cong \mathrm{O}(k) \times \mathrm{Sp}(l) \\
& C_{k, l}(\mathrm{U}) \cong \mathrm{U}(k) \times \mathrm{U}(l) \\
& C_{k, l}(\mathrm{SO}) \cong \mathrm{Sp}(k) \times \mathrm{SO}(l)
\end{aligned}
$$

satisfying a commutative diagram:

We now define a space and a map corresponding to the orbit space and the map Γ in Lemma 2.1 with respect to $S_{k, l}(\mathbf{G})$. We define a space $\mathcal{X}_{k, l}(\mathbf{G})$ by

$$
\mathcal{X}_{k, l}(\mathbf{G})=\mathbf{G}(d k+l) / C_{k, l}(\mathbf{G})
$$

and a $\operatorname{map} \Gamma_{k, l}: S_{k, l}(\mathbf{G}) \wedge \mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathbf{G}(d k+l)$ by

$$
\Gamma_{k, l}\left(s, g C_{k, l}(\mathbf{G})\right)=g s g^{-1} s^{-1}
$$

for $s \in S_{k, l}(\mathbf{G}), g \in \mathbf{G}(d k+l)$. We will identify $S_{k, l}(\mathbf{G})$ with S^{3} if there is no confusion. It is obvious that the inclusions $\mathbf{G}(d k+l) \rightarrow \mathbf{G}(d k+(l+1))$ and $\mathbf{G}(d k+l) \rightarrow \mathbf{G}(d(k+1)+l)$ induce the commutative diagram:

By the above observation on $C_{k, l}(\mathrm{SU})$ and $C_{k, l}(\mathrm{U})$, we see that there is a diffeomorphism:

$$
\begin{equation*}
\mathcal{X}_{k, l}(\mathrm{SU}) \cong \mathrm{U}(2 k+l) / C_{k, l}(\mathrm{U}) \tag{2.3}
\end{equation*}
$$

Note that $\mathbf{c}^{\prime}: \mathrm{Sp}(k+l) \rightarrow \mathrm{SU}(2 k+2 l)$ and $\mathbf{r}: \mathrm{SU}(k+l) \rightarrow \mathrm{SO}(2 k+2 l)$ are homomorphisms which restrict to surjections $S_{k, l}(\mathrm{Sp}) \rightarrow S_{k, 2 l}(\mathrm{SU})$ and $S_{k, l}(\mathrm{SU}) \rightarrow S_{k, 2 l}(\mathrm{SO})$, respectively. Then they induce maps $\mathbf{c}^{\prime}: \mathcal{X}_{k, l}(\mathrm{Sp}) \rightarrow \mathcal{X}_{k, 2 l}(\mathrm{SU})$ and $\mathbf{r}: \mathcal{X}_{k, l}(\mathrm{SU}) \rightarrow \mathcal{X}_{k, 2 l}(\mathrm{SO})$ satisfying a commutative diagram:

We observe a relation between $\mathcal{X}_{1, l}(\mathbf{G})$ and a projective space. It follows from Proposition 2.1 that $\mathcal{X}_{1, l}(\mathrm{Sp})=\mathbb{R} P^{4 l+3}$ and also that $\mathcal{X}_{1, l}(\mathrm{SU})$ is the total space of the unit tangent bundle of $\mathbb{C} P^{l+1}$. Note that the map $\rho: \mathbb{H} \rightarrow \mathrm{M}_{4}(\mathbb{R})$ above induces a homomorphism $\rho: \operatorname{Sp}(n) \rightarrow$ $\mathrm{SO}(4 n)$. Then there is a map $\mathbb{H} P^{\left[\frac{l}{4}\right]} \rightarrow \mathcal{X}_{1, l}(\mathrm{SO})$ which is natural with respect to the maps $\mathbb{H} P^{\left[\frac{l}{4}\right]} \rightarrow \mathbb{H} P^{\left[\frac{l+1}{4}\right]}$ and $\mathcal{X}_{1, l}(\mathrm{SO}) \rightarrow \mathcal{X}_{1, l+1}(\mathrm{SO})$. We regard $\mathbb{H} P^{\left[\frac{l}{4}\right]}$ to be a subspace of $\mathcal{X}_{1, l}(\mathrm{SO})$ by this map. Put $\Gamma_{1, l}^{\prime}$ to be the restriction of $\Gamma_{1, l}: S^{3} \wedge \mathcal{X}_{4, l}(\mathrm{SO}) \rightarrow \mathrm{SO}(4+l)$ onto $\mathbb{H} P^{\left[\frac{l}{4}\right]} \subset \mathcal{X}_{4, l}(\mathrm{SO})$. Then we have an obvious commutative diagram:

We next consider the map $\Gamma_{k, l}$ when l tends to ∞. Put $\mathcal{X}_{k, \infty}(\mathbf{G})=\operatorname{colim}_{l} \mathcal{X}_{k, l}(\mathbf{G})$. Then, by (2.2), we have a map

$$
\underset{l}{\operatorname{colim}} \Gamma_{k, l}: S^{3} \wedge \mathcal{X}_{k, \infty}(\mathbf{G}) \rightarrow \mathbf{G}(\infty)
$$

which we denote by Now for $\mathbf{G}=\mathrm{Sp}, \mathrm{SO}$, there is a principal bundle

$$
\mathbf{H}(k) \rightarrow \mathbf{G}(d k+l) / \mathbf{G}(l) \rightarrow \mathcal{X}_{k, l}(\mathbf{G})
$$

by Proposition 2.1 where $\mathbf{G}(d k+l) / \mathbf{G}(l)$ is $(4 l+2)$-connected and ($l-1)$-connected according as $\mathbf{G}=\mathrm{Sp}, \mathrm{SO}$. By Proposition 2.1 and (2.3), we also have a principal bundle

$$
\mathrm{U}(k) \rightarrow \mathrm{U}(2 k+l) / \mathrm{U}(l) \rightarrow \mathcal{X}_{k, l}(\mathrm{SU})
$$

in which $\mathrm{U}(2 k+l) / \mathrm{U}(l)$ is $2 l$-connected. Then it follows that there is a homotopy equivalence

$$
\mathcal{X}_{k, \infty}(\mathbf{G}) \simeq B \mathbf{H}(k)
$$

and thus we obtain a map

$$
\Gamma_{k, \infty}: S^{3} \wedge B \mathbf{H}(k) \rightarrow \mathbf{G}(\infty) .
$$

Moreover, by Proposition 2.1 and (2.4), we get:
Proposition 2.2. There is a homotopy commutative diagram:

Note that, by (2.5), we also have a map $\Gamma_{1, \infty}^{\prime}: S^{3} \wedge \mathbb{H} P^{\infty} \rightarrow \mathrm{SO}(\infty)$ which coincides with the map $\Gamma_{1, \infty}: S^{3} \wedge B \operatorname{Sp}(1) \rightarrow \mathrm{SO}(\infty)$.

We see from (2.2) that $\Gamma_{k, \infty}$ satisfies a homotopy commutative diagram

$$
\begin{gather*}
S^{3} \wedge B \mathbf{H}(k) \longrightarrow S^{3} \wedge B \mathbf{H}(k+1) \tag{2.6}\\
\underset{\mid \Gamma_{k, \infty}}{\left.\right|^{\Gamma_{k+1, \infty}}}(\infty)=\mathbf{G}(\infty)
\end{gather*}
$$

where the top horizontal arrow is induced from the inclusion $\mathbf{H}(k) \rightarrow \mathbf{H}(k+1)$. Then we get a map

$$
\Gamma_{\infty, \infty}=\underset{k}{\operatorname{colimm}} \Gamma_{k, \infty}: S^{3} \wedge B \mathbf{H}(\infty) \rightarrow \mathbf{G}(\infty) .
$$

Let $\mu: \mathbf{G}(n) \times \mathbf{G}(n) \rightarrow \mathbf{G}(2 n)$ be an inclusion such as by $\mu(A, B)=A \oplus B$ for $A, B \in \mathbf{G}(n)$. Then μ induces a map $\mathcal{X}_{k, l}(\mathbf{G}) \times \mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathcal{X}_{2 k, 2 l}(\mathbf{G})$, denoted by the same symbol μ, which
yields the standard H -space structure on $B \mathbf{H}(\infty) \simeq \mathcal{X}_{\infty, \infty}(\mathbf{G})$. Moreover, the map μ satisfies a commutative diagram

where Δ is defined by $\Delta(s, x, y)=(s, x, s, y)$ for $s \in S^{3}, x, y \in \mathcal{X}_{k, l}(\mathbf{G})$. Let ad : $[\Sigma X, Y] \cong$ [$X, \Omega Y$] denote the adjoint congruence. Then we have established:

Lemma 2.2. The map $\operatorname{ad}^{3} \Gamma_{\infty, \infty}: B \mathbf{H}(\infty) \rightarrow \Omega_{0}^{3} \mathbf{G}(\infty)$ is an H-map.
We will show that the image of $\mathrm{ad}^{3} \Gamma_{1, l}$ in homology generates the Pontrjagin ring of $\Omega_{0}^{3} \mathbf{G}(d k+l)$ in a range, which is an analogue of the generating variety for a loop space of a Lie group, and that the map $\mathrm{ad}^{3} \Gamma_{\infty, \infty}$ yields Bott periodicity.

3 Cohomology calculation for $\Gamma_{1, l}$

In this section, we give a cohomology calculation for the map $\Gamma_{1, l}$ and $\Gamma_{1, l}^{\prime}$. We first consider the case $\mathbf{G}=$ SO. In this case, we calculate $\Gamma_{1, l}^{\prime}$ in cohomology instead of $\Gamma_{1, l}$ since the cohomology of $\mathcal{X}_{1, l}(\mathrm{SO})$ is complicated as is seen in [14].

Proposition 3.1. For $l \geq 4$, the map $\left(\Gamma_{1, l}^{\prime}\right)^{*}: H^{*}(\mathrm{SO}(4+l) ; \mathbb{Z} / 2) \rightarrow H^{*}\left(S^{3} \wedge \mathbb{H} P^{\left[\frac{l}{4}\right]} ; \mathbb{Z} / 2\right)$ is surjective.

Proof. Recall first that the mod 2 cohomology of $\mathrm{SO}(4+l)$ is given as

$$
H^{*}(\mathrm{SO}(4+l) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[x_{1}, x_{3}, \ldots\right] \text { for } * \leq 3+l,
$$

where x_{i} is the suspension of the Stiefel-Whitney class w_{i+1}. Let u_{3} be a generator of $H^{3}\left(S^{3} ; \mathbb{Z} / 2\right)$. Then, by definition, the inclusion $\iota: S^{3}=S_{1, l}(\mathrm{SO}) \rightarrow \mathrm{SO}(4+l)$ induces the map in cohomology such as $\iota^{*}\left(x_{3}\right)=u_{3}$.

Let us consider the case $l=12$. Let $\operatorname{PSO}(n)$ denote the n-dimensional projective orthogonal group, that is, $\mathrm{SO}(n)$ divided by its center. It is well known that

$$
H^{*}(P \mathrm{SO}(16) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[v, \bar{x}_{1}, \bar{x}_{3}, \bar{x}_{5}, \bar{x}_{7}\right] \text { for } * \leq 7
$$

where $|v|=1$ and $\pi^{*}\left(\bar{x}_{i}\right)=x_{i}$ for the projection $\pi: \mathrm{SO}(16) \rightarrow \operatorname{PSO}(16)$. Moreover, we see from [4] that the Hopf algebra structure of $H^{*}(\operatorname{PSO}(16) ; \mathbb{Z} / 2)$ is given as

$$
\bar{\phi}^{*}(v)=0, \bar{\phi}^{*}\left(\bar{x}_{i}\right)=\sum_{j=1}^{i} a_{i j} \bar{x}_{j} \otimes v^{i-j}
$$

for $i=1,3,5,7$ in which $a_{53}=0, a_{73}=1$, where $\bar{\phi}$ stands for the reduced comultiplication. Let $\gamma: \operatorname{PSO}(16) \wedge P \mathrm{SO}(16) \rightarrow P \mathrm{SO}(16)$ be the reduced commutator map and let $\tilde{\gamma}: \mathrm{SO}(16) \wedge$ $P \mathrm{O}(16) \rightarrow \mathrm{SO}(16)$ be a lift of γ. Then by a straightforward calculation, we have

$$
\tilde{\gamma}^{*}\left(x_{7}\right)=u_{3} \otimes v^{4} .
$$

On the other hand, since the center of $\mathrm{SO}(16)$ is included in $C_{1,12}(\mathrm{SO})$, we have the projection $P \mathrm{SO}(16) \rightarrow \mathcal{X}_{1,12}(\mathrm{SO})$ satisfying a commutative diagram

where $\mathbb{Z} / 2$ is the center of $\operatorname{Sp}(1)$. Then we see that a generator x of $H^{4}\left(\mathcal{X}_{1,12}(\mathrm{SO}) ; \mathbb{Z} / 2\right)$ satisfies

$$
\pi^{*}(x)=v^{4},\left(\mathbf{r c}^{\prime}\right)^{*}(x)=q,
$$

where q is a generator of $H^{4}\left(\mathbb{H} P^{n} ; \mathbb{Z} / 2\right)$. Now we have a commutative diagram:

Then we obtain

$$
\left(\Gamma_{1,12}^{\prime}\right)^{*}\left(x_{7}\right)=u_{3} \otimes q .
$$

By (2.5), we have established

$$
\begin{equation*}
\left(\Gamma_{1, l}^{\prime}\right)^{*}\left(x_{7}\right)=u_{3} \otimes q \tag{3.1}
\end{equation*}
$$

By the Wu formula, we have

$$
\mathrm{Sq}^{4} x_{4 i-1}=(i-1) x_{4 i+3}, \mathrm{Sq}^{8} x_{4 i-1}=\binom{i-1}{2} x_{4 i+7}
$$

in $H^{*}(\mathrm{SO}(4+l) ; \mathbb{Z} / 2)$ for $*<4+l$. Then, applying this to (3.1), the proof is completed.

Proposition 3.2. For $i>0$, the map $\Gamma_{1, l}^{*}: H^{4 i+3}(\operatorname{Sp}(1+l) ; \mathbb{Z} / 2) \rightarrow H^{4 i+3}\left(S^{3} \wedge \mathbb{R} P^{4 l+3} ; \mathbb{Z} / 2\right)$ is surjective.

Proof. Let w and q be generators of $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2\right)$ and $H^{4}\left(\mathbb{H} P^{\infty} ; \mathbb{Z} / 2\right)$, respectively. Then the map qc : $\mathbb{R} P^{\infty} \rightarrow \mathbb{H} P^{\infty}$ induces $(\mathbf{q c})^{*}(q)=w^{4}$ in cohomology. Recall that the mod 2 cohomology of $\operatorname{Sp}(n)$ is given as

$$
H^{*}(\operatorname{Sp}(n) ; \mathbb{Z} / 2)=\Lambda\left(y_{3}, y_{7}, \ldots, y_{4 n-1}\right)
$$

where $y_{4 i-1}$ is the suspension of the modulo 2 reduction of the symplectic Pontrjagin class q_{i}. Then we have $\left(\mathbf{r c}^{\prime}\right)^{*}\left(x_{4 i-1}\right)=y_{4 i-1}$ here we use the same notation for the mod 2 cohomology of $\mathrm{SO}(\infty)$ as in the proof of Proposition 3.1. Then, for $l=\infty$, the proposition follows from Proposition 3.1 and (2.2). Thus the proof is completed by (2.2).

Let $X\langle n\rangle$ denote the n-connective cover of a path-connected space X. Then, in general, any map $f: S^{3} \wedge A \rightarrow X$ with A path-connected lifts to $X\langle 3\rangle$ which we denote by \tilde{f}.

Proposition 3.3. Any lift $\tilde{\Gamma}_{1, \infty}: S^{3} \wedge \mathbb{C} P^{\infty} \rightarrow(\mathrm{SU}(\infty))\langle 3\rangle$ of $\Gamma_{1, \infty}: S^{3} \wedge \mathbb{C} P^{\infty} \rightarrow \mathrm{SU}(\infty)$ induces an isomorphism $\tilde{\Gamma}_{1, \infty}^{*}: H^{5}((\mathrm{SU}(\infty))\langle 3\rangle ; \mathbb{Z}) \xrightarrow{\cong} H^{5}\left(S^{3} \wedge \mathbb{C} P^{\infty} ; \mathbb{Z}\right)$.

Proof. We will denote the modulo p reduction in cohomology by ρ_{p} for a prime p.
The integral cohomology of $\mathrm{SU}(n)$ is

$$
H^{*}(\mathrm{SU}(n) ; \mathbb{Z})=\Lambda\left(e_{3}, e_{5}, \ldots, e_{2 n-1}\right)
$$

where $e_{2 i-1}$ is the suspension of the Chern class c_{i}. Then, by considering the Serre spectral sequence of a fibre sequence $\mathbb{C} P^{\infty} \rightarrow(\mathrm{SU}(\infty))\langle 3\rangle \xrightarrow{q} \mathrm{SU}(\infty)$, we see that $H^{5}((\mathrm{SU}(\infty))\langle 3\rangle ; \mathbb{Z}) \cong$ \mathbb{Z} is generated by ϵ such that

$$
\begin{equation*}
q^{*}\left(e_{5}\right)=2 \epsilon . \tag{3.2}
\end{equation*}
$$

Let $\operatorname{PSU}(n)$ be the n-dimensional projective unitary group, that is, $\mathrm{SU}(n)$ divided by its center. Let p be an odd prime. In [4], it is shown that

$$
H^{*}\left(P \mathrm{SU}\left(p^{r}\right) ; \mathbb{Z} / p\right)=\mathbb{Z} / p[v] /\left(v^{p^{r}}\right) \otimes \Lambda\left(\bar{e}_{1}, \bar{e}_{3}, \ldots, \bar{e}_{2 p^{r}-1}\right)
$$

where $|v|=2$ and $\bar{\pi}^{*}\left(\bar{e}_{i}\right)=\rho_{p}\left(e_{i}\right)$ for the projection $\bar{\pi}: \operatorname{SU}\left(p^{r}\right) \rightarrow P \mathrm{SU}\left(p^{r}\right)$. Moreover, for the reduced comultiplication $\bar{\phi}$, we have

$$
\bar{\phi}\left(\bar{e}_{5}\right)=a_{1} \bar{e}_{3} \otimes v+a_{2} \bar{e}_{1} \otimes v^{2}
$$

for $a_{1}, a_{2} \in(\mathbb{Z} / p)^{\times}$. Let c and u_{3} be generators of $H^{2}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right)$ and $H^{3}\left(S^{3} ; \mathbb{Z}\right)$ respectively. Then, as in the proof of Proposition 3.1, we see that

$$
\Gamma_{1, \infty}^{*}\left(\rho_{p}\left(e_{5}\right)\right)=a \rho_{p}\left(u_{3} \otimes c\right)
$$

for $a \in(\mathbb{Z} / p)^{\times}$. Note that the above equation holds for any odd prime p. Then we have obtained, in the integral cohomology, that

$$
\Gamma_{1, \infty}^{*}\left(e_{5}\right)= \pm 2^{b} u_{3} \otimes c
$$

for some non-negative integer b, and thus by (3.2),

$$
\tilde{\Gamma}_{1, \infty}^{*}(\epsilon)= \pm 2^{b-1} u_{3} \otimes c
$$

which implies that b is positive. Since $H^{5}\left(S^{3} \wedge \mathbb{R} P^{2} ; \mathbb{Z}\right) \cong \mathbb{Z} / 2$, it follows from Lemma 3.2 below and (2.2) that $\tilde{\Gamma}_{1, \infty}\left(\rho_{2}(\epsilon)\right) \neq 0$ in the $\bmod 2$ cohomology, which yields $b=1$. Thus the proof is done.

Lemma 3.1. Let $\theta: \mathbb{R} P^{2} \rightarrow \mathrm{SO}(6)$ and $\iota: S^{3}=S_{1,2}(\mathrm{SO}) \rightarrow \mathrm{SO}(6)$ be the inclusions. Then the Samelson product $\langle\iota, \theta\rangle$ is essential.

Proof. By the adjointness of Whitehead products and Samelson products, we show that the Whitehead product of $\operatorname{ad}^{-1} \iota: S^{4} \rightarrow B \mathrm{SO}(6)$ and $\operatorname{ad}^{-1} \theta: \Sigma \mathbb{R} P^{2} \rightarrow B \mathrm{SO}(6)$ is essential. Suppose now that $\left[\operatorname{ad}^{-1} \iota, \mathrm{ad}^{-1} \theta\right]=0$. Then there exists a map $\kappa: S^{4} \times \Sigma \mathbb{R} P^{2} \rightarrow B \mathrm{SO}(6)$ satisfying the homotopy commutative diagram:

Let w and u_{4} be generators of $H^{1}\left(\mathbb{R} P^{2} ; \mathbb{Z} / 2\right)$ and $H^{4}\left(S^{4} ; \mathbb{Z} / 2\right)$, respectively. Then, by definition, we have $\kappa^{*}\left(w_{3}\right)=1 \otimes \Sigma w^{2}$ and $\kappa^{*}\left(w_{4}\right)=u_{4} \otimes 1$, where w_{i} is the Stiefel-Whitney class. On the other hand, it follows from the Wu formula that $\mathrm{Sq}^{3} w_{4}=w_{3} w_{4}$. Thus we obtain

$$
0=\operatorname{Sq}^{3}\left(u_{4} \otimes 1\right)=\operatorname{Sq}^{3} \kappa^{*}\left(w_{4}\right)=\kappa^{*}\left(\mathrm{Sq}^{3} w_{4}\right)=\kappa^{*}\left(w_{3} w_{4}\right)=u_{4} \otimes \Sigma w^{2} \neq 0
$$

which is a contradiction. Therefore we have established the Whitehead product $\left[\operatorname{ad}^{-1} \iota, \operatorname{ad}^{-1} \theta\right]$ is essential.

Recall that there is an isomorphism $\operatorname{SU}(4) \cong \operatorname{Spin}(6)$. Since the center of $\operatorname{SU}(4) \cong \operatorname{Spin}(6)$ is included in $C_{1,2}(\mathrm{SU})$, there is a projection $\pi: \mathrm{SO}(6) \rightarrow \mathcal{X}_{1,2}(\mathrm{SU})$.

Lemma 3.2. Let $\theta: \mathbb{R} P^{2} \rightarrow \mathrm{SO}(6)$ be the inclusion and let $\lambda: S^{3} \wedge \mathbb{R} P^{2} \rightarrow(\mathrm{SU}(4))\langle 3\rangle$ be the composite:

$$
S^{3} \wedge \mathbb{R} P^{2} \xrightarrow{1 \wedge \theta} S^{3} \wedge \mathrm{SO}(6) \xrightarrow{1 \wedge \pi} S^{3} \wedge \mathcal{X}_{1,2}(\mathrm{SU}) \xrightarrow{\tilde{\Gamma}_{1,2}}(\mathrm{SU}(4))\langle 3\rangle
$$

Then $\lambda^{*}(\epsilon) \neq 0$, where ϵ is a generator of $H^{5}((\mathrm{SU}(4))\langle 3\rangle ; \mathbb{Z}) \cong \mathbb{Z}$ as above.

Proof. Since $S^{3} \wedge \mathbb{R} P^{2}$ is 3-connected, the projection $(\mathrm{SO}(6))\langle 3\rangle \rightarrow \mathrm{SO}(6)$ induces an injection $\left[S^{3} \wedge \mathbb{R} P^{2},(\mathrm{SO}(6))\langle 3\rangle\right] \rightarrow\left[S^{3} \wedge \mathbb{R} P^{2}, \mathrm{SO}(6)\right]$ of pointed homotopy set. By Lemma 3.1, we know that the Samelson product $\langle\iota, \theta\rangle$ is essential, and then so is its lift $S^{3} \wedge \mathbb{R} P^{2} \rightarrow(\mathrm{SO}(6))\langle 3\rangle$.

Let $\tilde{\gamma}: S^{3} \wedge \mathrm{SO}(6) \rightarrow(\mathrm{SO}(6))\langle 3\rangle$ be a lift of the restriction of the reduced commutator of $\mathrm{SO}(6)$ to $S^{3} \wedge \mathrm{SO}(6)=S_{1,2}(\mathrm{SO}) \wedge \mathrm{SO}(6)$. Then we have a homotopy commutative diagram:

Thus we have established that λ is essential. Now since $S^{3} \wedge \mathbb{R} P^{2}$ is of dimension 5 and $(\mathrm{SU}(4))\langle 3\rangle$ is 4 -connected, it follows from the J.H.C. Whitehead theorem that $\lambda^{*}(\epsilon) \neq 0$.

4 Generating variety for $\Omega_{0}^{3} \mathbf{G}(n)$

The aim of this section is to prove that it holds for $\Omega_{0}^{3} \mathbf{G}(d+l)$ by the map $\Gamma_{1, l}$ and $\Gamma_{1, l}^{\prime}$ in the stable range of $\Omega_{0}^{3} \mathbf{G}(d+l)$, the generating variety argument which is analogous to single loop spaces of Lie groups in [6]. The proofs are done by a similar calculation in [16].

Theorem 4.1. For $* \leq l$, the Pontrjagin ring $H_{*}\left(\Omega_{0}^{3} \mathrm{SO}(4+l) ; \mathbb{Z} / 2\right)$ is a polynomial ring generated by the image of $\left(\operatorname{ad}^{3} \Gamma_{1, l}^{\prime}\right)_{*}: H_{*}\left(\mathbb{H} P^{\left[\frac{l}{4}\right]} ; \mathbb{Z} / 2\right) \rightarrow H_{*}\left(\Omega_{0}^{3} \mathrm{SO}(4+l) ; \mathbb{Z} / 2\right)$.

Proof. We first prove the case $l=\infty$. We will use the same notation for the mod 2 cohomology of $\mathrm{SO}(\infty)$ as in the proof of Proposition 3.1. Then, in particular, we have

$$
\mathrm{Sq}^{2 i-2} x_{2 i-1}=x_{4 i-3}, \mathrm{Sq}^{4 i-3} x_{4 i-1}=0 .
$$

Let q and u_{n} be generators of $H^{4}\left(\mathbb{H} P^{\infty} ; \mathbb{Z} / 2\right)$ and $H^{n}\left(S^{n} ; \mathbb{Z} / 2\right)$ as above, respectively . Then it follows from Proposition 3.1 that

$$
\left(\Gamma_{1, \infty}^{\prime}\right)^{*}\left(x_{4 i-1}\right)=u_{3} \otimes q^{i-1} .
$$

Since $\pi_{1}(\mathrm{SO}(\infty)) \cong \mathbb{Z} / 2$, we have

$$
H^{*}((\mathrm{SO}(\infty))\langle 1\rangle ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[\pi^{*}\left(x_{3}\right), \pi^{*}\left(x_{5}\right), \pi^{*}\left(x_{7}\right), \ldots\right],
$$

where $\pi:(\mathrm{SO}(\infty))\langle 1\rangle \rightarrow \mathrm{SO}(\infty)$ denotes the projection. Then, by the Borel transgression theorem, we have
and

$$
y_{2 i-2}^{2}=\mathrm{Sq}^{2 i-2} y_{2 i-2}=y_{4 i-4}, \mathrm{Sq}^{4 i-3} y_{4 i-2}=0,
$$

where y_{i} is the suspension of x_{i+1} and $\Delta\left(a_{1}, a_{2}, \ldots\right)$ stands for the simple system of generators $\left\{a_{1}, a_{2}, \ldots\right\}$. It is rewritten as

$$
H^{*}\left(\Omega_{0} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[y_{2}, y_{6}, y_{10}, \ldots\right] .
$$

Then it follows from the Borel transgression theorem that

$$
H^{*}\left(\Omega_{0}^{2} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)=\Delta\left(z_{1}, z_{5}, z_{9}, \ldots\right),\left(\mathrm{ad}^{2} \Gamma_{1, \infty}^{\prime}\right)^{*}\left(z_{4 i-3}\right)=u_{1} \otimes q^{i-1}
$$

and

$$
z_{4 i-3}^{2}=\mathrm{Sq}^{4 i-3} z_{4 i-3}=0,
$$

where z_{i} is the suspension of y_{i+1}. Namely, we have

$$
H^{*}\left(\Omega_{0}^{2} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)=\Lambda\left(z_{1}, z_{5}, z_{9}, \ldots\right)
$$

Now we take the dual Hopf algebra of $H^{*}\left(\Omega_{0}^{2} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)$ to get

$$
H_{*}\left(\Omega_{0}^{2} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)=\Lambda\left(z_{1}^{\sharp}, z_{5}^{\sharp}, z_{9}^{\sharp}, \ldots\right),\left(\operatorname{ad}^{2} \Gamma_{1, \infty}^{\prime}\right)_{*}\left(u_{1}^{\sharp} \otimes\left(q^{i-1}\right)^{\sharp}\right)=z_{4 i-3}^{\sharp},
$$

where x^{\sharp} means the Kronecker dual of x. Since $\pi_{3}(\mathrm{SO}(\infty)) \cong \mathbb{Z}$, we have

$$
H_{*}\left(\left(\Omega_{0}^{2} \mathrm{SO}(\infty)\right)\langle 1\rangle ; \mathbb{Z} / 2\right)=\Lambda\left(s_{5}, s_{9}, s_{13}, \ldots\right),
$$

where s_{i} is defined by $\pi_{*}^{\prime}\left(s_{i}\right)=z_{i}^{\sharp}$ for the projection $\pi^{\prime}:\left(\Omega_{0}^{2} \mathrm{SO}(\infty)\right)\langle 1\rangle \rightarrow \Omega_{0}^{2} \mathrm{SO}(\infty)$. Then, by the Borel transgression theorem, we have, for $*<l$,

$$
H_{*}\left(\Omega_{0}^{3} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t_{4}, t_{8}, t_{12}, \ldots\right],\left(\operatorname{ad}^{3} \Gamma_{1, \infty}^{\prime}\right)_{*}\left(\left(q^{i-1}\right)^{\sharp}\right)=t_{4 i-4}
$$

in which s_{i+1} is the transgression image of t_{i}, and therefore the proof is completed.
Note that the inclusion $\mathrm{SO}(4+l) \rightarrow \mathrm{SO}(\infty)$ is a $(4+l)$-equivalence. Then the inclusion $\Omega_{0}^{3} \mathrm{SO}(4+l) \rightarrow \Omega_{0}^{3} \mathrm{SO}(\infty)$ is a $(1+l)$-equivalence, and thus the theorem follows from (2.5).

In proving the generating variety argument for $\Omega_{0}^{3} \mathrm{Sp}(1+l)$, we will use:
Lemma 4.1 (S. Araki and T. Kudo [1]). Let X be a simply connected homotopy associative H-space. If $H_{*}(X ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[x_{1}, x_{2}, \ldots\right]$ and each x_{i} is transgressive, then we have

$$
H_{*}(\Omega X ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[y_{1}^{0}, y_{1}^{1}, \ldots, y_{2}^{0}, y_{2}^{1}, \ldots\right]
$$

where y_{k}^{l} is the transgression image of $x_{k}^{2^{l}}$.

Theorem 4.2. For $* \leq 4 l+2$, the Pontrjagin ring $H_{*}\left(\Omega_{0}^{3} \mathrm{Sp}(1+l) ; \mathbb{Z} / 2\right)$ is a polynomial ring generated by the image of $\left(\operatorname{ad}^{3} \Gamma_{1, l}\right)_{*}: H_{*}\left(\mathbb{R} P^{4 l+3} ; \mathbb{Z} / 2\right) \rightarrow H_{*}\left(\Omega_{0}^{3} \mathrm{Sp}(1+l) ; \mathbb{Z} / 2\right)$.

Proof. We first prove the case $l=\infty$. We will use the same notation for the mod 2 cohomology of $\operatorname{Sp}(1+l)$ as in the proof of Proposition 3.2. Let u_{n} and w be generators of $H^{n}\left(S^{n} ; \mathbb{Z} / 2\right)$ and $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2\right)$, respectively, as well as above. Then it follows from Proposition 3.2 that

$$
\Gamma_{1, \infty}^{*}\left(y_{4 i-1}\right)=u_{3} \otimes w^{4 i-4} .
$$

Now we take the dual Hopf algebra of $H^{*}(\operatorname{Sp}(\infty) ; \mathbb{Z} / 2)$ so that

$$
H_{*}(\operatorname{Sp}(\infty) ; \mathbb{Z} / 2)=\Lambda\left(y_{3}^{\sharp}, y_{7}^{\sharp}, \ldots\right),\left(\Gamma_{1, \infty}\right)_{*}\left(u_{3}^{\sharp} \otimes\left(w^{4 i-4}\right)^{\sharp}\right)=y_{4 i-1}^{\sharp} .
$$

Then, by the Borel transgression theorem, we get

$$
H_{*}(\Omega \operatorname{Sp}(\infty) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[z_{2}, z_{6}, \ldots\right],\left(\operatorname{ad} \Gamma_{1, \infty}\right)_{*}\left(u_{2}^{\sharp} \otimes\left(w^{4 i-4}\right)^{\sharp}\right)=z_{4 i-2}
$$

in which z_{i} is the transgression image of y_{i+1}.
By Lemma 5.1 in the next section, Theorem 4.1 implies the map

$$
\left(\operatorname{ad}^{3} \Gamma_{\infty, \infty}\right)_{*}: H_{*}(B \mathrm{Sp}(\infty) ; \mathbb{Z} / 2) \rightarrow H_{*}\left(\Omega_{0}^{3} \mathrm{SO}(\infty) ; \mathbb{Z} / 2\right)
$$

is an isomorphism. Then since $B \mathrm{Sp}(\infty)$ and $\Omega_{0}^{3} \mathrm{SO}(\infty)$ are of finite type, we deduce that the map $\left(\operatorname{ad}^{3} \Gamma_{\infty, \infty}\right)_{(2)}: B \mathrm{Sp}(\infty)_{(2)} \simeq \Omega_{0}^{3} \mathrm{SO}(\infty)_{(2)}$ is a homotopy equivalence, where - ${ }_{(2)}$ means the 2-localization in the sense of Bousfield and Kan [8]. In particular, we can consider the action of the Kudo-Araki operation $Q^{4 i}$ on $q_{i}^{\sharp} \in H_{*}(B \operatorname{Sp}(\infty) ; \mathbb{Z} / 2)$, where q_{i} is the $\bmod 2$ reduction of the symplectic Pontrjagin class. (See [11].) Recall that in $H^{*}(B \operatorname{Sp}(\infty) ; \mathbb{Z} / 2)$, we have

$$
q_{i}^{\sharp}=\left(q_{1}^{\sharp}\right)^{i} .
$$

Then, in particular,

$$
Q^{4 i} q_{i}^{\sharp}=\left(q_{i}^{\sharp}\right)^{2}=\left(q_{1}^{\sharp}\right)^{2 i}=q_{2 i} .
$$

Since $Q^{4 i}$ commutes with the transgression, we obtain

$$
Q^{4 i} z_{4 i-2}=z_{8 i-2}
$$

Then it follows from the Nishida relation $\mathrm{Sq}_{*}^{2} Q^{s}=\binom{s-2}{2} Q^{s-2}+Q^{s-1} \mathrm{Sq}_{*}^{1}$ that

$$
\mathrm{Sq}_{*}^{2} z_{8 i-2}=z_{4 i-2}^{2},
$$

where Sq_{*}^{k} denotes the dual of Sq^{k}. (See [11].) Since $\left(\operatorname{ad} \Gamma_{1, \infty}\right)_{*}\left(u_{2}^{\sharp} \otimes\left(w^{4 i-4}\right)^{\sharp}\right)=z_{4 i-2}$ and $\mathrm{Sq}_{*}^{2}\left(w^{4 i}\right)^{\sharp}=\left(w^{4 i-2}\right)^{\sharp}$, we have established

$$
\left(\operatorname{ad} \Gamma_{1, \infty}\right)_{*}\left(u_{2}^{\sharp} \otimes\left(w^{2 i-2}\right)^{\sharp}\right)=z_{2 i} .
$$

Applying Lemma 4.1, we get

$$
H_{*}\left(\Omega^{2} \operatorname{Sp}(\infty) ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[s_{1}, s_{3}, \ldots\right],\left(\operatorname{ad}^{2} \Gamma_{1, \infty}\right)_{*}\left(u_{1}^{\sharp} \otimes\left(w^{2 i-2}\right)^{\sharp}\right)=s_{2 i-1}
$$

where $s_{2^{m}(4 n-2)-1}$ is the transgression image of $z_{4 n-2}^{2^{m}}$. Note that we can consider the operation Q^{i-1} and Q^{i} on z_{i}. By the Nishida relation $\mathrm{Sq}_{*}^{1} Q^{s}=(s-1) Q^{s-1}$, we see that, for $m \geq 1$,

$$
\mathrm{Sq}_{*}^{1} z_{4 n-2}^{2^{m}}=\mathrm{Sq}_{*}^{1} Q^{2^{m-1}(4 n-2)} z_{4 n-2}^{2^{m-1}}=Q^{2^{m-1}(4 n-2)-1} z_{4 n-2}^{2^{m-1}}
$$

and then

$$
\mathrm{Sq}_{*}^{1} s_{2^{m}(4 n-2)-1}=s_{2^{m-1}(4 n-2)-1}^{2}
$$

Thus we can deduce that

$$
\left(\operatorname{ad}^{2} \Gamma_{1, \infty}\right)_{*}\left(u_{1}^{\sharp} \otimes\left(w^{i-1}\right)^{\sharp}\right)=s_{i},
$$

where we put $s_{2 i}=s_{i}^{2}$.
Since $\pi_{3}(\operatorname{Sp}(\infty)) \cong \mathbb{Z}$, we have

$$
H_{*}\left(\left(\Omega^{2} \operatorname{Sp}(\infty)\right)\langle 1\rangle ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[\bar{s}_{2}, \bar{s}_{3}, \bar{s}_{5}, \ldots\right]
$$

in which \bar{s}_{i} is defined by $\pi_{*}\left(\bar{s}_{i}\right)=s_{i}$ for the projection $\pi:\left(\Omega^{2} \operatorname{Sp}(\infty)\right)\langle 1\rangle \rightarrow \Omega^{2} \operatorname{Sp}(\infty)$. Then, by Lemma 4.1, we obtain

$$
H_{*}\left(\Omega_{0}^{3} \operatorname{Sp}(\infty) ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \ldots\right],\left(\operatorname{ad}^{3} \Gamma_{1, \infty}\right)_{*}\left(\left(w^{i-1}\right)^{\sharp}\right)=t_{i-1}
$$

and thus the proof is done.
Since the inclusion $\operatorname{Sp}(1+l) \rightarrow \mathrm{Sp}(\infty)$ is an $(4 l+6)$-equivalence, the inclusion $\Omega_{0}^{3} \mathrm{Sp}(1+l) \rightarrow$ $\Omega_{0}^{3} \mathrm{Sp}(\infty)$ is an $(4 l+3)$-equivalence. Therefore the proof is completed by (2.2).

We next consider the case $\mathbf{G}=\mathrm{SU}$. Only in this case, we will use a result related with Bott periodicity which is an easy consequence of [20].

Lemma 4.2. Let a be a generator of $H^{2}\left(\Omega_{0}^{3} \mathrm{SU}(\infty) ; \mathbb{Z}\right) \cong \mathbb{Z}$. Then the integral homology of $\Omega_{0}^{3} \mathrm{SU}(\infty)$ is

$$
H_{*}\left(\Omega_{0}^{3} \mathrm{SU}(\infty) ; \mathbb{Z}\right)=\mathbb{Z}\left[b_{2}, b_{4}, \ldots\right], b_{2 i}=\left(a^{i}\right)^{\sharp} .
$$

Theorem 4.3. For $* \leq 2 l$, the Pontrjagin ring $H_{*}\left(\Omega_{0}^{3} \mathrm{SU}(\infty) ; \mathbb{Z}\right)$ is a polynomial ring generated by the image of $\left(\operatorname{ad}^{3} \tilde{\Gamma}_{1, l}\right)_{*}: H_{*}\left(\mathcal{X}_{1, l}(\mathrm{SU}) ; \mathbb{Z}\right) \rightarrow H_{*}\left(\Omega_{0}^{3} \mathrm{SU}(2+l) ; \mathbb{Z}\right)$.

Proof. The case $l=\infty$ follows from Proposition 3.3 and Lemma 4.2. One can easily verify that the inclusion $\Omega_{0}^{3} \mathrm{SU}(2+l) \rightarrow \Omega_{0}^{3} \mathrm{SU}(\infty)$ and the natural map $\mathcal{X}_{1, l}(\mathrm{SU}) \rightarrow \mathcal{X}_{1, \infty}(\mathrm{SU})$ are $(2 l+4)$-equivalences. Thus the theorem follows from (2.2).

5 Bott periodicity

In this section, we prove that the map $\mathrm{ad}^{3} \Gamma_{\infty, \infty}: B \mathbf{H}(\infty) \rightarrow \Omega_{0}^{3} \mathbf{G}(\infty)$ is a homotopy equivalence. Notice here that we have not used any result concerning real and symplectic Bott periodicity. We have only used the result of Toda [20] to get the ring structure of $\Omega_{0}^{3} \mathrm{SU}(\infty)$ in the last section. Then our result provides a new proof for real and symplectic Bott periodicity.

We start with an easy algebraic lemma. Let V be a graded free module over a PID. As usual, we will call V of finite type if, in each dimension, V is finitely generated. We will denote the free commutative graded algebra generated by V by ΛV. Then we can easily see:

Lemma 5.1 (Kono and Tokunaga [17]). Let V and W be of finite type graded free modules over a PID R such that $V \cong W$, and let U be a graded module over R. Given a graded algebra map $f: \Lambda V \rightarrow \Lambda W$ and a graded module map $g: U \rightarrow \Lambda V$. If the image of $f \circ g: U \rightarrow \Lambda W$ generates ΛW, then f is an isomorphism.

Now we prove our main theorem.
Theorem 5.1. The map $\mathrm{ad}^{3} \Gamma_{\infty, \infty}: B \mathbf{H}(\infty) \rightarrow \Omega_{0}^{3} \mathbf{G}(\infty)$ is a homotopy equivalence.
Proof. We first prove the case $\mathbf{G}=\mathrm{SU}$. By Lemma 2.2, Theorem 4.3 and Lemma 5.1 together with the homotopy commutative diagram (2.6), we see that the map $\operatorname{ad}^{3} \Gamma_{\infty, \infty}: B \mathrm{U}(\infty) \rightarrow$ $\Omega_{0}^{3} \mathrm{SU}(\infty)$ induces an isomorphism in the integral homology. Then, by the J.H.C. Whitehead theorem, we obtain that $\mathrm{ad}^{3} \Gamma_{\infty, \infty}$ is a homotopy equivalence. Thus, in particular, from $\pi_{*}(B \mathrm{U}(2))$ is for $* \leq 4$, we deduce:

$$
\pi_{*}(B \mathrm{U}(\infty)) \cong \begin{cases}\mathbb{Z} & *=2,4, \ldots \tag{5.1}\\ 0 & *=1,3, \ldots\end{cases}
$$

Note here that we do not need to use Bott periodicity of $B \mathrm{U}(\infty)$.
We next consider the case $\mathbf{G}=\mathrm{SO}$. We may assume $\Gamma_{1, \infty}^{\prime}=\Gamma_{1, \infty}$ as noted above. Then it follows from Lemma 2.2, Theorem 4.1, Lemma 5.1 and (2.6) that the map $\operatorname{ad}^{3} \Gamma_{\infty, \infty}: B \operatorname{Sp}(\infty) \rightarrow$ $\Omega_{0}^{3} \mathrm{SO}(\infty)$ induces an isomorphism in the mod 2 homology. On the other hand, we have $\mathbf{q c}^{\prime}=$ $1: B \mathrm{Sp}(\infty) \rightarrow B \mathrm{Sp}(\infty)$ and $\mathbf{r c}=2: B \mathrm{SO}(\infty) \rightarrow B \mathrm{SO}(\infty)$. Then it follows from (5.1) that the homotopy groups of $B \mathrm{Sp}(\infty)$ and $\Omega_{0}^{3} \mathrm{SO}(\infty)$ are odd torsion free. Then, by considering the rational cohomology of $B \mathrm{Sp}(\infty)$ and $B \mathrm{SO}(\infty)$, we obtain

$$
\pi_{*}(B \operatorname{Sp}(\infty)) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \cong \begin{cases}\mathbb{Z}\left[\frac{1}{2}\right] & *=4,8, \ldots \\ 0 & * \neq 4,8, \ldots\end{cases}
$$

and

$$
\pi_{*}\left(\Omega_{0}^{3} \mathrm{SO}(\infty)\right) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \cong \begin{cases}\mathbb{Z}\left[\frac{1}{2}\right] & *=4,8, \ldots \\ 0 & * \neq 4,8, \ldots\end{cases}
$$

This implies that the maps $\mathbf{c}_{*}^{\prime}: \pi_{*}(B \operatorname{Sp}(\infty)) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow \pi_{*}(B \mathrm{U}(\infty)) \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ and $\mathbf{c}_{*}: \pi_{*}\left(\Omega_{0}^{3} \mathrm{SO}(\infty)\right) \otimes$ $\mathbb{Z}\left[\frac{1}{2}\right] \rightarrow \pi_{*}\left(\Omega_{0}^{3} \mathrm{SU}(\infty)\right) \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ are split monomorphisms. Thus since $\operatorname{ad}^{3} \Gamma_{\infty, \infty}: B \mathrm{U}(\infty) \rightarrow$ $\Omega_{0}^{3} \mathrm{SU}(\infty)$ is a homotopy equivalence as above, the map $\left(\mathrm{ad}^{3} \Gamma_{\infty, \infty}\right)_{*}: \pi_{*}(B \operatorname{Sp}(\infty)) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow$ $\pi_{*}\left(\Omega_{0}^{3} \mathrm{SO}(\infty)\right) \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ is an isomorphism by Proposition 2.2. On the other hand, we can apply Lemma 5.1 to the map $\mathrm{ad}^{3} \Gamma_{\infty, \infty}: B \mathrm{Sp}(\infty) \rightarrow \Omega_{0}^{3} \mathrm{SO}(\infty)$ in the mod 2 homology by Lemma 2.2 and Theorem 4.1. Then we obtain the map $\operatorname{ad}^{3} \Gamma_{\infty, \infty}: B \operatorname{Sp}(\infty) \rightarrow \Omega_{0}^{3} \mathrm{SO}(\infty)$ induces an isomorphism in the mod 2 homology. Summarizing, we have established that this map is a homology equivalence and therefore by a generalized J.H.C. Whitehead theorem [12], the proof is completed.

The case $\mathbf{G}=S p$ is quite similar to the case $\mathbf{G}=\mathrm{SO}$.
Corollary 5.1. Let $d_{k, l}=\min \{2 k+1,2 l+1\}, \min \{k, 4 l+3\}, \min \{4 k+3, l\}$ according as $\mathbf{G}=\mathrm{SU}, \mathrm{Sp}, \mathrm{SO}$. Then the map $\mathrm{ad}^{3} \Gamma_{k, l}: \mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \Omega_{0}^{3} \mathbf{G}(d k+l)$ is a $d_{k, l}$-equivalence.

Proof. Let $a_{k}=2 k+1, k, 4 k+3$ according as $\mathbf{G}=\mathrm{SU}, \mathrm{Sp}, \mathrm{SO}$. Then it is easy to see that the projection $B \mathbf{H}(k) \rightarrow B \mathbf{H}(\infty)$ is an a_{k}-equivalence. By definition, there is a principal bundles

$$
\mathbf{H}(k) \rightarrow \mathbf{G}(d k+l) / \mathbf{G}(l) \rightarrow \mathcal{X}_{k, l(\mathbf{G})}
$$

for $\mathbf{G}=\mathrm{Sp}, \mathrm{SO}$ and

$$
\mathrm{U}(k) \rightarrow \mathrm{U}(2 k+l) / \mathrm{U}(l) \rightarrow \mathcal{X}_{k, l}(\mathrm{SU})
$$

Let $b_{k, l}=2 l+1,4 l+3, l$ according as $\mathbf{G}=\mathrm{SU}, \mathrm{Sp}, \mathrm{SO}$. Then it follows from the above principal bundles that the composite of the inclusion $\mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathcal{X}_{k, \infty}(\mathbf{G})$ and the homotopy equivalence $\mathcal{X}_{k, \infty}(\mathbf{G}) \simeq B \mathbf{H}(k)$ is a $b_{k, l}$-equivalence. Let $c_{k, l}=4 k+2 l-3,4 k+4 l-1,4 k+l-4$ according as $\mathbf{G}=\mathrm{SU}, \mathrm{Sp}, \mathrm{SO}$. Then the inclusion $\Omega_{0}^{3} \mathbf{G}(d k+l) \rightarrow \Omega_{0}^{3} \mathbf{G}(\infty)$ is a $c_{k, l}$-equivalence. Now let us consider a homotopy commutative diagram:

Then it follows from Theorem 5.1 that the map ad ${ }^{3} \Gamma_{k, l}: \mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \Omega_{0}^{3} \mathbf{G}(d k+l)$ is a $\min \left\{a_{k}, b_{k, l}, c_{k, l}\right\}-$ equivalence. Thus the proof is completed.

6 Applications to instanton moduli spaces

In this section, we give applications of the results obtained so far to the homotopy types of instanton moduli spaces $\mathcal{M}_{k}(G)$.

Recall from Lemma 2.1 that the map $\Gamma_{k, l}: S^{3} \wedge \mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathbf{G}(d k+l)$ was constructed from the moduli space of $\mathbf{G}(d k+l)$-instantons on S^{4}. In particular, $\mathcal{X}_{k, l}(\mathbf{G})$ is a subspace of $\mathcal{M}_{k}(\mathbf{G}(d k+l))$. We denote the inclusion $\mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathcal{M}_{k}(\mathbf{G}(d k+l))$ by $i_{k, l}$. Then, by definition, we have

$$
\begin{equation*}
\operatorname{ad}^{3} \Gamma_{k, l}=j_{k, l} \circ i_{k, l} \tag{6.1}
\end{equation*}
$$

where $j_{k, l}: \mathcal{M}_{k}(\mathbf{G}(d k+l)) \rightarrow \Omega_{0}^{3} \mathbf{G}(d k+l)$ is the inclusion. We also have a commutative diagram:

Here the horizontal arrows are induced from the inclusion $\mathbf{G}(d k+l) \rightarrow \mathbf{G}(d k+l+1)$. Then we have a map

$$
\underset{l}{\operatorname{colimi}_{k, l}}: \mathcal{X}_{k, \infty}(\mathbf{G}) \rightarrow \underset{l}{\operatorname{colim}} \mathcal{M}_{k}(\mathbf{G}(d k+l))
$$

which we denote by $i_{k, \infty}: \mathcal{X}_{k, \infty}(\mathbf{G}) \rightarrow \mathcal{M}_{k}(\mathbf{G}(\infty))$.
Proposition 6.1. The map $i_{k, \infty}$ is a homotopy equivalence.
Proof. We first prove the case $\mathbf{G}=\mathrm{SU}, \mathrm{SO}$. Recall from [18] that there is a homotopy equivalence $\mathcal{M}_{k}(\mathbf{G}(\infty)) \simeq B \mathbf{H}(k)$. On the other hand, we know that $\mathcal{X}_{k, \infty}(\mathbf{G}) \simeq B \mathbf{H}(k)$. Then we have $H^{*}\left(\mathcal{X}_{k, \infty}(\mathbf{G}) ; \mathbb{Z}\right) \cong H^{*}\left(\mathcal{M}_{k}(\mathbf{G}(\infty)) ; \mathbb{Z}\right)$ as abstract rings. Note that $H^{*}\left(\mathcal{X}_{k, \infty}(\mathbf{G}) ; \mathbb{Z}\right)$ is a polynomial ring. By Corollary 5.1, we see that $H^{*}(\mathcal{X} k, \infty(\mathbf{G}) ; \mathbb{Z})$ is generated by $\operatorname{Im}\left(\operatorname{ad}^{3} \Gamma_{k, \infty}\right)^{*}$. Therefore, by Lemma 5.1 and (6.1), the proof is completed.

We next prove the case $\mathbf{G}=$ Sp. By Corollary 5.1, the map $\left(\operatorname{ad}^{3} \Gamma_{k, \infty}\right)^{*}: H^{*}\left(\Omega_{0}^{3} \operatorname{Sp}(\infty) \mathbb{Z} / 2\right) \rightarrow$ $H^{*}\left(\mathcal{X}_{k, \infty}(\mathbf{G}) ; \mathbb{Z} / 2\right)$ is an isomorphism for $* \leq k$. Then, in particular, it follows from (6.1) that the map $\left(i_{k, \infty}\right)_{*}: \pi_{1}\left(\mathcal{X}_{k, \infty}(\mathbf{G})\right) \rightarrow \pi_{1}\left(\mathcal{M}_{k}(\mathbf{G}(\infty))\right)$ is an isomorphism, where both $\pi_{1} \mathcal{X}_{k, \infty}(\mathbf{G})$ and $\pi_{1}\left(\mathcal{M}_{k}(\mathbf{G}(\infty))\right)$ are isomorphic to $\mathbb{Z} / 2$. Since both $\mathcal{X}_{k, \infty}\langle 1\rangle$ and $\mathcal{M}_{k}(\mathbf{G}(\infty))\langle 1\rangle$ have the homotopy type of $B \mathrm{SO}(k)$, we can see the map $\left(i_{k, \infty}\right)\langle 1\rangle: \mathcal{X}_{k, \infty}\langle 1\rangle \rightarrow \mathcal{M}_{k}(\mathbf{G}(\infty))\langle 1\rangle$ induces an isomorphisms in the cohomology with the coefficients $\mathbb{Z} / 2$ and $\mathbb{Z}\left[\frac{1}{2}\right]$ quite analogously to the above case. Then the map $\left(i_{k, \infty}\right)\langle 1\rangle$ is a homology equivalence, and hence a homotopy equivalence. Therefore the map $i_{k, \infty}$ is a homotopy equivalence.

We estimate a range that the map $i_{k, l}: \mathcal{X}_{k, l}(\mathrm{SU}) \rightarrow \mathcal{M}_{k}(\mathrm{SU}(d k+l))$ is a homotopy equivalence.

Theorem 6.1. The map $i_{k, l}: \mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathcal{M}_{k}(\mathbf{G}(d k+l))$ is a $\min \{2 k+1,2 l+1\}$-equivalence.

Proof. In [15], it is shown that the map $\mathcal{M}_{k}(\mathbf{G}(d k+l)) \rightarrow \mathcal{M}_{k}(\mathbf{G}(\infty))$ induced from the inclusion $\mathbf{G}(d k+l) \rightarrow \mathbf{G}(d k+l+1)$ is a $(2 k+1)$-equivalence. On the other hand, the map $\mathcal{X}_{k, l}(\mathbf{G}) \rightarrow \mathcal{X}_{k, \infty}(\mathbf{G})$ induced from the inclusion $\mathbf{G}(d k+l) \rightarrow \mathbf{G}(d k+l+1)$ is a $(2 l+1)$ equivalence as is seen in the proof of Corollary 5.1. Then the theorem follows from (2.2) and Proposition 6.1.

References

[1] S. Araki and T. Kudo, Topology of H_{n}-spaces and H-squaring operations, Mem. Fac. Sci. Kyūsyū Univ. Ser. A 10 (1956), 85-120.
[2] M.F. Atiyah, Geometry of Yang-Mills Fields, Scuola Norm. Sup. Pisa (1979).
[3] M.F. Atiyah and J.D.S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys. 61 (1978), 97-118.
[4] P.F. Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3 (1965), 305-336.
[5] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. Fr. 84, 251-281.
[6] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-68.
[7] R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.
[8] A.K. Bousfield and D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, 304, Springer-Verlag, Berlin-New York, 1972.
[9] C.P. Boyer, J.C. Hurtubise, B.M. Mann and R.J. Milgram, The topology of instanton moduli spaces. I. The Atiyah-Jones conjecture, Ann. of Math. (2) 137 (1993), no. 3, 561609.
[10] C.P. Boyer, B.M. Mann and D. Waggoner, On the homology of $\mathrm{SU}(n)$ instantons, Trans. Amer. Math. Soc. 323 (1991), no. 2, 529-561.
[11] F.R. Cohen, T.J. Lada and J.P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics, 533, Springer-Verlag, Berlin-New York, 1976.
[12] E. Dror, A generalization of the Whitehead theorem, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), pp. 13-22. Lecture Notes in Mathematics, 249, Springer, Berlin, 1971.
[13] Y. Kamiyama, Generating varieties for the triple loop space of classical Lie groups, Fund. Math. 177 (2003), 269-283.
[14] Y. Kamiyama, A. Kono, M. Tezuka, Cohomology of the moduli space of $\mathrm{SO}(n)$-instantons with instanton number 1, Topology Appl. 146/147 (2005), 471-487.
[15] F. Kirwan, Geometric invariant theory and the Atiyah-Jones conjecture, Proc. S. Lie Mem. Conf., Scand. Univ. Press (1994), 161-188.
[16] D. Kishimoto, A topological proof of real and symplectic Bott periodicity theorem, J. Math. Kyoto Univ. 41 (2001), no. 1, 33-41.
[17] A. Kono and K. Tokunaga, A topological proof of Bott periodicity theorem and a characterization of $B \mathrm{U}, \mathrm{J}$. Math. Kyoto Univ. 34 (1994), no. 4, 873-880.
[18] M. Sanders, Classifying spaces and Dirac operators coupled to instantons, Trans. Amer. Math. Soc. 347 (1995), 4037-4072.
[19] Y. Tian, The Atiyah-Jones conjecture for classical groups and Bott periodicity, J. Diff. Geom. 44 (1996), 178-199.
[20] H. Toda, A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto Ser. A, vol. 32 (1959), 103-119.

