<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>空間局在したコープー対による超伝導と計算機シミュレーション (Anderson Modelの厳密解とその応用に関する理論的研究) 科研費研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>今田 正俊</td>
</tr>
<tr>
<td>キーワード</td>
<td>物性研究 物性研究 物性研究 物性研究 物性研究 物性研究 物性研究 物性研究</td>
</tr>
<tr>
<td>年月日</td>
<td>1986-02-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91876</td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版元</td>
<td>publisher Kyoto University</td>
</tr>
</tbody>
</table>
空間局所化したクーパー対による超伝導と計算シミュレーション

東大物性研 今田 正敬

最近、実験的な大きな範囲にわたったクーパー対による超伝導の可能性を示すような場合に説明されている。電子間の有効引力のエネルギーが、バンド幅とも相関しており、または大きくなくなったとき、空間局所化したクーパー対が重要な役割をするようになる。一つの典型的な例は、パイオーラーによる超伝導である。この場合、強い電子一部が相互同相のために、伝導帯よりも低いエネルギーのクーパー対の準粒子状態を生ずる。こうしてできた多数のパイオーラーは、電子バンドを形成することになる。しかしながら、有効引力を媒介するもの（パイオーラーの場合のフォノン）の特徴的な振動数が大きいためにはバンド収縮が大きくなるため、結果的にパイオーラーによる超伝導は金属的なふるまいは期待されない。これまでは考えによくみられているのは、これらのクーパー対の準粒子である。電子の間には、強力な相互相に対して、特徴的な特性が持っていると考えられる。なぜかというと、この場合、形成されるパイオーラーのエネルギーは大きくなり、引力の効果が減じることができるからである。この意味で、ここで考える空間局所化したクーパー対というのは、必ずしも原子的な同期を形成させたペアが安定するのではなく、ある程度の空間的ひずみを持つものと見なして考えている。

クーパー対が同期している場合には、ある程度の空間的ひずみを持つ場合、超伝導の性質は物質の精度構造や方向性の影響を大きく受ける。特に、この場合には、シングレットクーパー対だけではなく、トリプレットの相による超伝導も可能となり、いわゆる重い電子の超伝導の場合にその可能性が最近明らかになっている。またシングレット対に限ることとしても、精度構造を反映して、誇張的なオーダーはメタが可能となり議論されている。

一方、このように空間的に局在したクーパー対による超伝導が可能となるのは、しりとされる場合であって、コヒーレンスの長さが短い、このような超伝導の場合、通常のBCS理論は不十分な場合、またはアルファループが相当小さい場合、BCS理論の適用は困難である。実際、BCS理論はもしもその温度が大々すればならぬほど高い温度度を示し、核融合領域で使われるものとされる表現も基本的な性質を失わない。しかし、核融合における温度が大きくなったり、温度が低下すると、超伝導は相が下がっていくことも核融合領域の研究が進まないため、超伝導の特性を
ラのアップロードはここを破棄していると考えなければならな。このように、空間を局在したグーパー則による超伝導の場合、通常の超伝導とはいくつも点でもるする必要がある。我々ここで考察するのは、最急展和化、モンテカルロ計算の結果を参考にしながら、空間局在したグーパー則の展開の過程で得られた超伝導の性質がどのように変化するかという問題である。まず、この問題を議論することのできる最も簡単なモデルを、引力的な相互作用をもつハーバート模型あるいは拡張されたハーバート模型である。簡単のためにはハーバート模型を考えてみよう。このハミルトニアンは次の式で与えられる。

$$\mathcal{H} = \sum_{\langle \alpha \beta \rangle} \left[-t \left(C_\alpha^\dagger C_\beta + h.c. \right) + U \eta_\alpha \eta_\beta \right]$$ (1)

おこなで、C_α^\daggerはスピネルの電子を生成する操作子、C_αは$C_\alpha^\dagger C_\alpha$である。このモデルの範囲では、有効電子間引力は電子が同じサイドにある時だけ働くと考えており、いくつかの点を、上述べた特徴が考察されていない。すなわち、オーダーパラメータの局在するグーパー則は各電子上のペアだけであるから、トピックレットを含む以外的なオーダーパラメータについて議論することはできない。しかしながら観測の重担である。トピックレットの展開式について考えられるならば、(1)をもう一つ解け、観測データからの近似を強調した線形的展開はそれをどこまで妥当にしたかを知ることができる。それぞれの近似の妥当性が等価的トピックレットの場合にかかわらず、必要性の強調の場合やトピックレットの場合にも自明さを求めることが出来るであろう。以上を考えると、(1)は空間局在したグーパー則による超伝導の性質を議論するための最も簡単な出発点を与える。

ハーバート模型（しくも）に注を落ち着もの、このハミルトニアンから生ずる超伝導は周波数と極限では、ある程度変数のある形で解くことが出来るが、その変数の極限で妥当な近似する、すみやかに有限のときに、どの程度まで妥当であるかについては、あまり明らかでない。(1)をモンテカルロ法による計算機シミュレーションで評価することが出来れば、この問題に対する解答を与えることができると予想されるが、現在まではところ、(1)を用いることとのシミュレーションで、超伝導度やその他の物的性質を超伝導度で評価することができるほどは成績していない。そこでは、変数の極限で正しい結果の最近的なふるさか、どの程度のもので妥当であるかを評価する問題を考えてみよう。

まず変数の極限では、ハミルトニアンはまたは以下の形に帰着される。

$$\mathcal{H}_s = \sum_{\langle \alpha \beta \rangle} \left[\frac{t^2}{U} \left(C_\alpha^\dagger C_\beta^\dagger C_\beta C_\alpha + h.c. \right) \right]$$ (2)

このハミルトニアンは基にスピネルのハイゼンベルグ・ハミルトニアンを変形され、独立なパラメータはしないので、超伝導度が温暖なパラメータに変形している。そのため、(1)は大きいために、(2)は不変して減少する。このような変数の変化は、変数を増大させているとき、そこまでよく成り立つであろう。因式では電子は常に上流でペアをしており、距離することはなくて、ポア粗子のようなふるさか。
しかしながら、これらの結果を基にすると、クーパー対の解離は核が崩壊するようになる。ここでの L_{UI} のように元気な状態が存在する場合を考えると、L_{UI} の値を UI_{L} まで下げた方がより安定になる。これは、クーパー対が元気な状態を保持する状態にあるため、まず元気な状態を確保することになる。実際に、このような状態を含むハミルトニアンは、計算経路によるモンテカルロ計算の数値を用いて計算することはできる。また、他の元気な状態を用いて計算することによって、超伝導相と電荷密度波相の識別が可能な可能性がある。以下では、ハードモデルのモデルにおいて、最も解析が簡易である場合をより Constantin、H. (1992) によって提示されている。さらに、L_{UI} のスピノリングが弱いとする近似を考える。L_{UI} のスピノリングを用いて、以下のモンテカルロ計算で求めた超伝導度数を示すことでみよう。
がわかった。以下では$t_0=1.0$, $U=-2.0$に固定して示した結果を示す。
まず超伝導状態と電荷密度波状態の重合の問題と考えてみよう。
図2に示されているのが系が
half-filledの場合にシングレット状態の超伝導オーダーパラメータΔ_Sと電荷密度波のオーダーパラメータΔ_Cを横軸で、chain間の最接近電子間相互作用をだんだん強くしながら示したものです。X印が超伝導のオーダーパラメータをあらわし、。印が電荷密度波のオーダーパラメータをあらわしている。図2からわかるように超伝導相から一次階層的に電荷密度波相へ移り、共存状態は見られない。一方、図3は、同じことをquarter-filledの場合について調べたものです。この場合では、かなり低い領域においても、超伝導と電荷密度波の共存状態が観測されていることがわかる。一般に柔かいかhalf-filledでない場合には両相は共存は可能な可能性であると考えられるが、これは弱絶縁の場合にはバンドの構造自体に、両相の共存が問われてみられていることとは対照的であり、强絶縁結果の特徴と考えられる。

この系に、サイトランダムなランダムネスを加えて超伝導に与える効果をしほべたシミュレーションでは、ランダムネスの大きさが、t_0の大きさと同程度になると、超伝導への顕著な影響が見られないことがわたった。一方、不純物を1つだけ、サイトエネルギーの一の変化という形を与えたシミュレーションでは、不純物ごとのもオーダーパラメータの大きな変化が見られた。これに比べると、不純物ごとのオーダーパラメータの変化が見られなかった。このため弱絶縁の場合の非局所性不純物の効果は、超伝導状態での局所スクラルに大きな影響を与える可能性
のあることが示された。発散、擁塞内で時間を長く短くても、バンド幅と同様
変数変えるランダムネスになるまで、転送点数等の影響はあまり大きくないが、そ
の場合でも通信スパイラルには重要な影響があると思われる。