<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>三角格子反強磁性イジング的ハイゼンベルク模型の磁化過程:非線形揺動と秩序化過程: 料研費研究会報告</td>
</tr>
<tr>
<td>著者(s)</td>
<td>宮下 毅二 西森 秀稔</td>
</tr>
</tbody>
</table>
| 言語 | 物性研究

文献引用 | 物性研究 (1986), 45(6): 85-88 |
| 问题 | 物性研究 (1986), 45(6): 85-88 |
| URL | http://hdl.handle.net/2433/91895 |
| 右利き |
| 形式 | 部門誌論文 |
| 出版者 |

京都大学大学院 理学研究科 物性研究室
三角格子反強磁性イジングのハイスゼルク相の磁化過程

東大理 宮下精
東大理 西森秀樹

3.1 序
三角格子反強磁性体はそのフラステレーションの相互作用のために様々な興味深い秩序状態を示すことが知られている。前回はイジングのハイスゼルク相の逐次的相転移と基底状態の非自明な構造（重要な Coexistence 場合）について報告したが今回はその磁化過程について報告する。今回は特にフラステレーション相での量磁効果の影響に注目し磁化過程と直流量子の内核を調べた。反強磁性ハイスゼルク相では量子効果のためスピンが電解し、これがフラステレーション相ではこの効果が更に強化され、基底状態はスピンが消える状態、つまり静的スピン秩序がなくなるものに、量子磁化状態が出現するのではないかという予想がある。この点を的確に数値計算で調べことができると、等方的ハイスゼルク相の基底状態は磁化過程を変える予想される。等方的ハイスゼルク相の場合では、主基底状態は \(\mathbf{M} = \mathbf{H}/\mathbf{N} \mathbf{J} \) であり、また量子磁化状態は次のように基底状態の磁化過程を特徴的な違いを示すものである。この基底状態は磁化過程を特徴的な違いを示すものである。ここで簡単な磁化過程を示す。

\[
\mathbf{H}_A = \sum_{\langle ij \rangle} J_{ij} (S_i^x S_j^x + S_i^y S_j^y) + J_{ij} S_i^z S_j^z - 3 \mathbf{A} \cdot \mathbf{S}_i^z \tag{1}
\]

次に、等方的基底状態での磁化過程を基底状態の磁化過程を示すから、基底状態での磁化過程を示す。

\[
\mathbf{H}_B = \sum_{\langle ij \rangle} J_{ij} S_i^z S_j^z - 3 \mathbf{B} \cdot \mathbf{S}_i^z - 3 \mathbf{A} \cdot \mathbf{S}_i^z \tag{2}
\]

で調べる。\(\mathbf{A} \) は \(\mathbf{B} \) の基底状態での磁化過程を調べるものを持つ。等方的基底状態の磁化過程を調べる。基底状態での磁化過程を調べる。

\[2 \mathbf{E} (\theta_1, \theta_2, \theta_3, \varphi_1, \varphi_2, \varphi_3) = 0, \tag{3} \]

\(\varphi = \theta_1, \theta_2, \theta_3, \varphi_1, \varphi_2, \varphi_3 \), ここで \(\varphi = 0 \) と設定。この (3) の安定解は次の 2 つのタイプがある。

図 1
(i) 非平面解

\[y_1 = 0, \ y_2 = -y_3 = 2\pi/3, \]

\[\cos \theta_1 = \cos \theta_2 = \cos \theta_3 = \begin{cases} h/(2A+1) & \text{for (1)} \cr h/(3-2d) & \text{for (2)} \end{cases} \]

このときのエネルギーが

\[E_0 = \begin{cases} -1.5 \ (2A+1+h^2)/(2A+1) & \text{for (1)} \cr -1.5 \ (3-2d+h^2)/(3-2d) & \text{for (2)} \end{cases} \]

(ii) 平面解

これはヨウパルトが2軸を含む平面内にあるもので

\[C_i = \cos \alpha_i, \ S_i = \sin \alpha_i, \ i = 1, 2, 3, \ \theta_i = [0, 2\pi) \] となると

\[C_i (S_j + S_k) = A S_i (C_j + C_k) - S_i h \quad \text{for (1)} \quad (i, j, k) = (1, 2, 3) \]

\[C_i (S_j + S_k) = S_i (C_j + C_k - 3d c_i - h) \quad \text{for (2)} \]

を満たすものである。これらの式を解けることににより図2に示した解が磁場の強さに応じて現われることがわかる。さらに、それ以外にも局所安定流が2つあるという解はあり、また（5）の非平面解も局所安定であるが図2の解が最も安定であることが確かめられた。それ以外の解で磁場極限は図3αに示される。これは（2）のタイプのもので \(d = 0.1 \) （磁線） \(d = 0.3 \) （実線）のものである。（1）のタイプのものはすべてのAにおいて連続的上り図3の磁線に類似な磁化過程を与え。ここで3つの特微的磁場の大きさ \(h_c^1, h_c^2, h_c^3 \) は

\[h_c^1 = 1.0 \quad \text{for (1)}, \quad h_c^2 = 1 - 2d \quad \text{for (2)} \]

\[h_c^3 = \begin{cases} 2A-1 + \sqrt{2A^2+4A-1} \cr 1 + \sqrt{1 + 4(4d^2+6d)} \end{cases} \wedge 2 \]

\[h_c^3 = 3.0 \quad \text{for (1)}, \quad h_c^3 = 3 - 2d \quad \text{for (2)} \]

\[(1) \ (II) \ (III) \ (IV) \]

図2

図3

-86-
(6)におけるM^2の評価は変化の連続的な場合のもので$d = 0.3$で時における不連続な場合
には式(5)を数値的に調べることで得られる。また領域(Ⅰ)での変化は(1), (2)で各

$$M^2 = \frac{A-1}{1+A} + \frac{2\kappa}{1+A}$$

$$M^2 = \frac{D}{1-D} + \frac{\kappa}{1-D}$$

となる。図4a, bに(1), (2)の基底状態の相図(τ, A)及び(τ, d)を示す。
図4a, bのいずれも不連続変移の場所を示している。

また(Ⅱ)の区画では$M^2 = \frac{2}{\beta} S_x^2$のみならず$M^2 = \frac{3}{\beta} S_x^2$も有限の大きさを持ち、これは等方向の場合(A = 1.0 or d = 0.0)には見られなかった磁場下での非自明な自由度
をとることも注意しておきたい。

§3 基底状態における磁化過程(量子系)

量子系の磁化過程に関してはつまる進行的な考え方が次のような推察が述べられる。今、
J_{xy} = 0 とするときxy軌道となり、どの3角形をすべてのスピノンがそうならないという条件
を満たすとある三角形に循環した状態(Wannier state)が基底状態になる。そして基底状態
状態とエネルギー差は$4J^2$である。これ$J_{xy} << J$を振動として考えるとスピン成分の相
互作用はJ_{xy}の一次で寄与するのでWannier state
はクーロン-J_{xy}のバンドにスプリットする。(図5)
しかしながらここでの新しい基底状態は多くの状態の
相関を含んでおり完全な個々の状態(図2(Ⅲ))で
はないと予想される。 ところで粒子数から

$\lim_{M \to 0} M_e(H) = 0$ が予想される。また$J^2 > H > J_{xy}$
のある範囲で完全な個々の状態あるいはそれに近い
状態が最小エネルギーを与える、さらにJ_{xy}プラトーの
磁化過程に出現することが予想できる。 今、粒子(1)
ではJ^2とJ_{xy}を交換するので状態のエネルギーは

$$J_{xy} = 0 \quad J_{xy} << J$$

--- 87 ---
$H = 0$ のエネルギー E_0, $\langle H | \uparrow \uparrow \uparrow \rangle = E_0$ を用いて $E(H) = E_0 - HM$, $M = \langle H | \downarrow \downarrow \downarrow \rangle$ となるので M^2 によって分類される固有空間での基底エネルギー $E_0(M)$ の情報から磁化過程
が導かれる。上述の予想を実際エネルギースペクトル $E(H)$ を調べることで確かめいくつかあるが、量子系では古典系の場合のように 4 個のスピンを切り取って考えられず、全
者のハミルトニアンを対角化せずに考えない。これは一般的ではなく、多少有限
の系を数値的に対角化することによってより精密な推定を予想する。図 6 に磁化過程の例を示す。ここではスピンの数が有限なので観測的平均的形成になる。ここで見られるように量子
系でも分クラスターは存在するが、このような磁化過程は古典的な場合を異なり 0 から初期の
緩和的な過程であり Ferro 磁性の特徴を持たないことを示唆しているようだ。このオ
ーブの量子効果の特徴である。また波動函数の解析的な解が見出される。S^z と相関する部分で
波動函数を含む M^2 について書くと

$$
|M^2\rangle = \sum_j C_j |\uparrow \uparrow \uparrow \rangle \quad (\sum_j C_j^2 = M^2)
$$

となるが、今、状態にあらゆる量子的な状態を示す
目安として次の量を考える

$$
Q = \sum_j C_j^4 \left(\sum_i \frac{1}{3}\right), \quad \sum_j C_j^2 = 1.
$$

ここで $M^2 = \sum_j C_j^2$ である基底ベクトルで $\frac{1}{3}$ はその数である。ここで $1 \leq Q \leq (\frac{1}{3})$ であり $Q \geq (\frac{1}{3})$ の
ときは少数の $\downarrow \uparrow \uparrow \uparrow$ の状態が典型的な状態を
考えられるが、また $0 < Q < \frac{1}{3}$ は代相空間内に非常に
少なかった量子的な状態を見せるだろう。（但し、Q は
基底の数が少ないほど $\frac{1}{3}$ まで目安である）図 7
に $Q(M^2)$ を示す。ここでわかるように $\frac{1}{3}$ 常に
を与える状態は非常に古典的であるが、他の場合は、
1 の前後と量子的な混合状態であると考えられる。

また別の解析により Ablatt を基底ベクトルの数大さくよりの他で小さな値をとる傾向があることがあった。このような性質は古典系の場合 (Ablatt の構造は同定全
に見られない場強い性質であり磁場中の中性子散乱など) 実際に観測される量子効果
一つとなると考えられる。

参考文献

1) S. Miyashita & H. Kawamura : J. P. S. J. 12 (1985) 3335 & 3353
3) 質点模型、量子論一高橋達生：数理科学 268 (1985) 70

- 88 -