<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>強誘電性液晶の分極反転のカイネティクス 非線形揺動と秩序化過程 料研費研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>石橋 善弘</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 53(55): 67-70</td>
</tr>
<tr>
<td>トピック</td>
<td>強誘電性液晶の分極反転のカイネティクス 非線形揺動と秩序化過程</td>
</tr>
<tr>
<td>日時</td>
<td>1986-03-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91900</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
強誘電性液晶の分極反応のカイネティクス

名古屋大学工学部　石橋　善弘

§1. 序
強誘電性の分極反応の問題は、1960年頃までは、かなり精力的に研究されていたが、実用性（たとえば高速メモリとしての利用）に乏しいことが明らかになってからは、ほぼ忘れ去られた研究課題となってしまった。しかし、反応過程が Avarami理論を適用できる代表的な例の一つであることに変わりはなく、また分極反応の時間経過を追跡する測定装置に格段の進歩がみられる現在、より信頼できる実験データを提供することにより、理論の進展に対して何らかの刺激を与えることが期待できる。さらに、強誘電性液晶は発見されて間もないこと、液晶では分極境界でのある効果が小さく、それを無視して議論できそうなことなどを考慮すると、もう一度分極反応という古典的課題を取りあげることは、あくまでも意味があるだろう。

本論文では、§2において実験データの解釈に用いる Avarami理論を根拠し、§3において、液晶における分極反応の測定データを示し、Avarami理論をもとに議論する。また液晶の分極反応の温度依存性的実験について述べ、そこで見つかったスケーリング則について述べる。

§2. Avarami理論
いま、無限の結晶を考え、分極反応は、反転域の結晶が核発生とその後の成長によって行われるとして、時刻 tにおける核発生面積を R(t)（単位時間、単位体積当り）、成長は等方的であるとする。すると、時刻 tにおける、反転域の全体積に占める割合 Q(t) は

$$Q(t) = 1 - \exp[-A(t)]$$ (1)

となる。ただし、A(t) は"extended volume"とよばれるもので、

$$A(t) = C_d \int_0^t \left[v(t-t') \right]^d \cdot R(t) \, dt$$ (2)

d 与えられる（d は次元数、C_d は d による定数：C_1 = 1, C_2 = π, C_3 = 4π/3）。

ここで、R(t) として、ふたつの特別の場合を考える。\(I \) は、常数 nucletation の場合、\(II \) は、常数 nucletation の場合、\(\Omega = \frac{1}{2} \) である。\(I \) では、\(R(t) = R_0 \)（constant nucleation の場合）、\(II \) では、\(R(t) = R_0 (t/t_0)^{1/3} \)（これは適当に核生成がある、そのから反転が起こるという意味で、latent nuclei の場合）である。すなわち、\(I \) では、\(A(t) = -(t/t_0)^{d+1} \)、\(t_0 = (C_d v R_0)^{-1/(d+1)} \)、\(II \) では、\(A(t) = -(t/t_0)^d \)、\(t_0 = (C_d Nv)^{1/d} \) と考えられる。

- 67 -
§3. 電解質液体の分野反応

表面安定化電解質液体（Surface Stabilized Ferroelectric Liquid Crystal）である DOBAMBC を用い、矩形波電圧を印加して Q(t) を測定すると、

\[A(t) = -\frac{t}{t_0}, \]

\[N = N_0 \] の形で表すことができるが変わった。しかし、これでは、\(d = 1 \) のケースと、\(d = 2 \) のケースは不明である。

そのため、反転過程を直接観察することを試みた。偏光顕微鏡下で連続写真と取り、それをより、核の数、境界の移動速度等を求めた。その結果、反転速度の形状は 2 次元（\(d = 2 \）、ただし異方性がある）、反転は \(t = 0 \) で開始した核からの進行、途中で新しい核は
発生しないとこだわった。即ち \(d = 2 \)、[II] のケースに相当する。

次に印加電圧 \(V \) あるいは電圧を印加した際の実験を行い、 \(N, V = \sqrt{V_0 V_1} \) （\(V_0 \)、\(V_1 \) は反転
成長の長さ、矩形方向の境界移動速度）、および反転時間 \(t_s \) （\(Q(t) = 0.5 \) をみた
時間）を \(V \) の関数として求めた。その結果、\(N \sim (V - V_0)^{2N} \)、\(t_s \sim (V - V_0)^{2N} \) 等の形で整理できることを確認した。ただし、\(V_0 \) は印加電圧である。印加変電圧が小さい範囲（3 〜 20 ポルト）では、\(N \approx 0.8, \theta \approx 1.0, r_s \approx 1.5, \) 印加変電圧が大きい範囲（20 〜 40 ポルト）では、\(N \approx 2.3, \theta \approx 1.0, \theta \approx 2.4 \) などがえられた。このような数値がえられた要因はよくわかりない。

Athermal 理論では、\(\theta = \theta \approx 2V + \theta N/2 \) の関係が予想されるが、上の 2 種の \(\theta \) の関係が大体満足している。

次に、分野反応の温度依存性にについて調べた。

以下では正の \(T \) の値が \[(T - T_c) / T_c \] (\(T_c \) は SSFLC 相への転移温度) を用いる。その結果、核の数は印加電圧に対して強まって \(t \rightarrow t \) において異なった形で変化するが、\(T \) は大きく
（速く）核化することがわかった。これは予想できるものである。さらに詳細に調べると、\(N, \theta, r_s \) のいずれも、\(V \) の関数として、それぞれの universal curve にある。既に scaling 則が成立つことがわかった（\(N = 1 \sim 3 \)）。

問題は残っているような scaling 則が成立つことがあるが、核密度 \(N \) について、ひとつの解明と次の示す。有効な核の数は、印加電圧に依存するが、その様子を詳細に調べると、（i）上記のような、核の数は、印加電圧が二を越えると急激に \(t \rightarrow t \) に反応して、\(N \) を \(V \) の関数として、それぞれの核は \(N \) について、\(\theta \) の値が急激に上昇する。このように、核の数 \(N \) は \(V \) に依存する。核の活性化電圧を導入する。これは、核の数が \(N \) の依存することに、活性化電圧は、核の核の固定構造を異にし、しかも温度に依存する。いま核の数 \(N \) と活性化電圧を用いて書きと

\[N(V, t) = \frac{1}{S_0} \sum_{i=1}^{N_0} \theta(V - V_i(t)). \]

* 電解質の性質により、核の数が正比することを利用して、レーザー光の透過率を測定することにより、電解質の数の減少が起こることを示すことができる。
ただし，$\theta(x)$ は階段関数で

$$\theta(x) = \begin{cases} 0, & (x < 0) \\ 1, & (x \geq 0) \end{cases} \quad (4)$$

によって定義される。また，$V_c(x)$ は温熱によくある主因の核の活性化電圧，N_0 は消散している核の全数，S_0 は全面積である。ここで，活性化電圧が，すべての核について，これに比例する，さら

$$V_c(x) = V_c^0 \cdot x \quad (5)$$

とあらわれると仮定すると，(5) は (3) に代入することにより，

$$N(V, x) = \frac{1}{S_0} \sum_{i=1}^{N_0} \theta \left(V - V_c^0 \cdot x \right) = \frac{1}{S_0} \sum_{i=1}^{N_0} \theta \left(\frac{V}{x} - V_c^0 \right)$$

$$= N \left(\frac{V}{x}, 1 \right) \quad (6)$$

が成立つことがわかり，図 1 図示した実験結果が説明できることになる。
オ2形に示すべきについては、実験データのばらつきが大きく、スケーリング則が成立しているかどうかそれは明確ではないが、一応

\[v = C \left(\frac{V}{d} - U_0 \right) \]

（7）

の関係が成立しているようである。もし、(6)と(7)を認めると、Avrami理論から、

\[t_\infty = N \text{ とびの間数としてできるのであるから、} \]

\[t_\infty \text{も} \frac{V}{d} \text{のみの関数となるのは当然である（図3）}。\]

参考文献
1) M. Avrami: J. Chem. Phys. 7 (1939) 1103, 8 (1940) 212, 9 (1941) 177.

* これは、ある温度において、Handschy および Clark によって示された関係式

\[v = C \left(V - V_0 \right) \]

と一般化したものになっている。