<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ソリトン伝播に対する鎖間相互作用の効果（非線形揺動と秩序化過程）</td>
<td>科研費研究会報告</td>
</tr>
<tr>
<td>Author(s)</td>
<td>川崎 明夫</td>
</tr>
<tr>
<td>Institution</td>
<td>物性研究</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1986-03-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/91913</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
ソリトン伝播に対する鎖間相互作用の効果

京都大学教養部物理川崎辰夫

ソリトンを含む物理の非線型現象の分野での重要性は云うまでもないが、固体物性物理の中では、多くの場合マイナーな効果しか示さない。磁性体の場合もほぼ同様な位置にあると思われるが、実験データの中にソリトンを取り込んだ理論を必要とするものが現れて以来、急速な進展をみた。Meikeskaが1次元磁性体におけるソリトンの理論的導出に成功して以来、その妥当性および実験的検証は精力的になされてきたが、今のところソリトンの寄与を明確に示すことは成功していない。そこで理論的、数学的な興味が先行することになる。ソリトンの理論と実験データをついつ合わせたときの不一致から理論に求められる新たな課題は、実在物質に対する理論の構築である。磁性体を連続媒体として理論は作られたが、固体は結晶格子を組んだ系散性を持つ原子の集合体とみなさなければならない。結晶格子には必ず欠陥や不純物混入などの乱れが存在する。更にまた3次元物質を1次元系の集合とみなす近似がどの程度影響を与えるのかは不明である。熱的ゆらぎ影響を無視する実験は無い。このようなファクターを一つづつ調べてゆくことがこの研究のねらいである。

離散格子の効果については、既に幾つかの理論的考察がなされている。それによると、先ず差分方程式が微分方程式からの違いが重要である。空間座標が連続的でないこともから、ソリトンの幅と格子間隔との大小関係が問題となる。幅が格子間隔と同程度となる領域では、格子ボテンシャルの周期性がソリトンの運動に反映し、初期速度の減衰、振動およびボテンシャルによる補捉という連続媒体上でみられない現象が現れる。速度の減衰は極めて顕著であり、定常速度は初期速度に余りならない。

不純物の効果としては、当然周期性の崩れるによる影響が考えられるが、ソリトンの運動を阻害する方向にのみ作用するものであろうか。質点の運動では、ボテンシャルはバリヤーとなり運動が阻害される場合にはよりだけでなく、谷となって零運動を加速する場合も存在する。ソリトンの運動にとっては対応物は何であろうか。

ソリトンの研究は、数学的な困難さのゆえに今のところ殆ど1次元系に限られていない。しかし実在物質を対象とするからには、次元の効果を確かめた上でなければ安易に無視出来るものではない。相互作用の相対比が10^5程度ならば考慮しなくても良いといい切れのではないか。

実験データとの対応には、熱的ゆらぎをとり入れる必要がある。ソリトンの自由ガスモデルについては統計力学で十分かどうか。不純ソリトンは熱のマグノンの多重励起と考えた時はが熱との折り合いが良くなるのではないか。

昨年度の研究として、最初の問題が磁散性の効果に取組み一応の結論に達したので、今年度は不純物効果および次元による効果に的を絞って考えた。

以下、容易面型1次元磁性体における計算機シミュレーションという立場から、今迄の成果を記す。
§1 グラフ離散性の効果

取り上げるモデルハミルトニアンは

$$\hat{H} = -J \sum_j s_j s_{j+1} + \frac{H}{2} \sum_j (s_j^z)^2 - \frac{H}{2} s_j^x$$

で、それに従う運動方程式は、

$$\dot{s}_j = s_j \left[J(s_{j-1}^z + s_{j+1}^z) + H x - D s_j^2 \right]$$

となる。図のような極座標表示では、運動方程式は以下のように書き直される。

$$\dot{\phi}_j = J \tan \theta_j \left[\cos \phi_{j+1} \cos(\phi_{j+1} - \phi_j) + \cos \phi_{j-1} \cos(\phi_j - \phi_{j-1}) \right]$$

$$- J [\sin \phi_{j+1} \sin \phi_{j-1} + D \sin \phi_j + H \tan \theta_j \cos \phi_j$$

連結体極限で得られるサイン・ゴールドン方程式は、$H \ll 1$、および

$$\sin(\phi_j - \phi_{j+1}) \sim \phi_j - \phi_{j+1}, \cos(\phi_j - \phi_{j+1}) \sim 1$$

を付加的に導入している。サイン・ゴールドン方程式との差というときは、これらを組み合わせて考えている。

運動方程式は、格子スピン数200～400についてサイン・ゴールドン解を初期値として与え、直接数値積分を行う方法をとった。計算精度は、$1/J$単位で1000～2000ステップ後で、エネルギーおよびスピンの長さ保持について10^{-4}以上である。

サイン・ゴールドン解の安定性に離散格子上では厳密解となっていないので、格子上で安定な形に変形するかまたは徐々に崩壊して行く。その様子を図2に示す。崩壊に至る時間はソリトンの幅に強く依存する。磁場を変えることにより幅を制御した様子を図3に示す。崩壊の最大大きな原因としては、人力波の格子への不適合による容易性からのスピンの立ち上がりが考えられ、図4はその証拠として、ゼータ成分に関係したエネルギーの時間変化をプロットしてある。崩壊は突然引き起こされるのではなく、内部で徐々に進行している現象である。振動現象は3種類考えられる。ソリトンの幅、振幅、および重心に振動が観測される。（図5）これら

の現象は総てサイン・ゴールドン解には存在しない性格のものである。即ちソリトンの幅が格子間隔の10倍程度でも格子の離散性の影響は無視しえない。
82 結合された1次元系におけるソリトンの運動

サイン-ゴールドン系をそのまま2次元へ拡張したものの安定解を持たないことが判っているが、チェインをたばけた形の系におけるソリトンの問題は未解決である。ここでの問題は項の1次元ソリトンへの波間結合の影響である。先ず第一に考えられるのは、ソリトンの運動にたいする協力関係である。即ち、ソリトンはより安定化する場合がある。チェイン間の相互作用が以下の形をしており、

\[H' = -J' \sum S_{n,j} \cdot S_{m,i,j} \]
強磁性のときには、ソリトンのエネルギーおよび運動方程式から、異なるチェイン間のソリトンは位相を描える方向に運動する。また、たとえ不純物が存在しても、場合によっては協力的に乗り越えることが可能である。その相互作用の影響が現実となる下限は、力学運動への影響なので十分小さい可能性がある。以上の状況を明らかにするシミュレーションをおこなったが、チェイン間での鏡相結合を最近接に限定すると、余り大きな系を取り上げなくても、その性格は理解出来るように思われる。ここではチェインの本数を3および5としてその傾向をしらべた結果のみを報告する。チェイン両端およびチェイン間挙形への境界条件は、自由端および周期的の両モデルについて行ったが、定性的な差異は存在しなかった。以下では不純物ポテンシャルのない場合についてのみ結果を示す。図は橋軸に座標を架軸にスピンのx成分を、時間を追ってプロットしてある。実線、破綻は夫々異なるチェインのプロファイルを示している。初期位相にズレがあると、チェイン間の相互作用の為、位相を揺れる方向に波は進行し、先行波からエネルギーを得た波が必ず遅延してゆく。位相差の小さい場合には、エネルギーの電流が小さいため、一方の波が先行してしまうということがなく、互いの引力園内でエネルギーの交互電流のため波は振動する。これらの現象が、チェイン間相互作用J †がチェイン内相互作用の値から10−5程度で既に顕著であることは驚くべきことであろう。

不純物ポテンシャルの存在する場合は、別の機会に譲る。

以上、2年間の研究によって、磁性体内的ソリトンの運動は、純粋数学的なモデルにおける解は、かなり不十分で、実験データとの比較の前に未だ多くの問題が存在することが理解された。

文献 §1については、Prog.Theor.Phys.75-3 in press 参照

-8-