<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>異方性の競合する反強磁性混晶に対する二体近似理論:磁性体における新しいタイプの相転移現象 研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>真野 博史</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究:磁気の科学と技術:1986年4月号 529-530</td>
</tr>
<tr>
<td>発行日</td>
<td>1986-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/92163</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>歌川記念館</td>
</tr>
<tr>
<td>他情報</td>
<td></td>
</tr>
</tbody>
</table>
「磁性体における新しいタイプの相転移現象」

異方性の競合する反強磁性混合に対する二体近似理論

学会院大理 真野 誠史

スピン異方性が直交する二種の反強磁性体からなるランダム混合は、三種類の異なる秩序相を持つことが知られている。高濃度領域と低濃度領域における全てのスピンが主たるスピンの容易軸方向を向いた二つの反強磁性相と、中間濃度領域に現れる△AF相と呼ばれるスピンの向きがいずれのスピンの容易軸からも傾いた相とである。この混晶の相転移点の性質は繊り込み群を用いて、相図、磁化の温度変化、磁化率、比熱等は分子場近似を用いて研究されて来た。

異方性の競合する混晶の研究における中心的課題は、濃度と共に磁気的諸量に現れる異方性がどの様に変化するのかを理解することである。本研究では、イジング的異方性とXY的異方性が競合する場合、それぞれの異方性の特徴が混晶の性質にどの様に影響するのかを調べた。一般に、分子場近似は反応性に定性的には正しい結果を与えると考えられるが、異方性の型がイジング的かXY的かの差、磁化率等の温度変化、特に、転移点における異常がどの程度明瞭に現れるか等を議論するのには不十分である。また、ランダム磁性体の特徴の一つとして磁化等がその周りの局所環境の違いに応じて空間的に揺らぐことがある。このような局所環境効果を考慮することは、異方性の競合する混晶の理解において重要であると考えられる。そこで、自由エネルギーのクラスター展開法を用いて、スピン対クラスターまでを正確に取り扱う二体近似理論を開発した。定式化の詳細は文献1）に譲ることにするが、この理論は二体近似以上に簡単に対称であり、スピン間相互作用が隣接スピン間以外に第二、第三隣接スピン間にも関与している場合にも適用できる。また、クラスター内のスピン働く有効場が周りのスピン配置に依存することをとおして、局所環境効果は自動的に取り入れられている。

モデル

2個のパラメータに分岐できる立方格子上にランダムに分布したイジング的異方性を持つA−スピンとXY的異方性を持つB−スピンの混晶を考える。A−スピン、B−スピンともにスピンの大きさは1/2とし、異方性は最隣接スピン間に働く異方的交換相互作用で記述されるものとし、外場Hののもとで、ハミルトニアン

\[\mathcal{H} = 2 \sum_{i,j} \left(J_{ij}^a \left(S_i^a S_j^a + S_i^b S_j^b \right) + J_{ij}^b S_i^a S_j^b \right) - g \mu_B \sum_i S_i \right] \]

で表される系を考える。A−スピンの容易軸をz軸とする。異方性の強さは一つのパラメーターr (0 < r < 1) を用いて、J_m = J_a = J , J_m = J_b = r J の形で表す。A−B スピン間の相互作用はA−A スピン間およびB−B スピン間の相互作用の幾何平均で与える。このような簡単で対称的なハミルトニアンを採用した理由は、イジング的異方性とXY的異方性との差を与えない分子場近似を用いるかぎり、全ての結果はA−スピンの濃度c_a = 1/2に関し対称になるため、結果に現れる非対称性を調べることにより異方性の差が議論できるからである。

−529−
研究会報告

計算結果

以下、得られた結果の主なものを記す。

(1) 濃度－温度面における相図

相図は、常磁性相と2つの反磁磁性相とを分ける2本の転移線と0AF相と2つの反磁磁性相とを分ける2本の転移線からなる。転移速度は分子場近似と比べ大きく減少する。また、XY成分がそろう反磁磁性相が現れる濃度範囲は殆ど変化しないが、イジング成分がそろう反磁磁性相の濃度範囲は広がる。結果として、0AF相の現れる領域は狭まり分子場近似の与えるものの半分程度にまでなる。このことは、XY異方性はイジング異方性と競合した場合壊され易いことを示しているものと考えられる。強磁性混晶に対しても同様の計算を行ったところ磁化の向きが傾いた相（0F相）の現れる領域は分子場近似の与えるものと同程度となり、異方性の競合を問題にする場合強磁性体と反磁磁性体との間には顕著な差があるものと考えられる。

(2) 0AF相の磁気構造

0AF相においては各スピンの磁平均値の向きはその置かれた局所環境に依存している。異方性が弱い場合には、各スピンの向きの分布は単純であり、分布関数は全体の磁化の向きにピークをもっている。しかし、異方性が強くなると各スピンの向きの分布は広がり、x軸向きからx軸方向まで始めとけて分布するようになる。従って、0AF相を単に磁化が元の容易軸からの角度傾いた相であると見なすのは余りにも単純な描象と言わざるを得ない。スピンの向きが分布していることは0AF相の特質の一つであり、この観点からみると0AF相は通常の反磁磁性相とは質的にも異なった相と言わざるを得ない。

(3) 磁化率

分子場近似によれば、反磁磁性相から0AF相への転移点で磁化率は明らかに折れ曲がりを示す。しかし、二体近似を用いた計算ではこの折れ曲がりは不十分に明確になり、特に異方性が強い場合には平行磁化率、垂直磁化率ともにこの転移点で殆ど異常を示さない。従って、磁化率の温度変化に非等異常が見いだせなくても、このことから直ちに0AF相への二次転移がないとは結論されないことになる。

結論として、異方性の競合する混晶の理解を進める上で分子場近似は不十分であり、定量的にはもとより定性的にも二体近似理論を用いる必要があることがわかる。また、局所環境効果を取り入れることも必要であることがわかる。