<table>
<thead>
<tr>
<th>タイトル</th>
<th>2次元三角格子上の量子ハイゼンベルクモデルのモンテカルロシミュレーション 磁性体における新しいタイプの相転移現象 研究会報告</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>高須 昌子 宮下 精二 鈴木 増雄</td>
</tr>
<tr>
<td>雑誌名</td>
<td>物性研究</td>
</tr>
<tr>
<td>イゾトール</td>
<td></td>
</tr>
<tr>
<td>タイムスタンプ</td>
<td>1986-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/92179</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

京都大学
2. 元三角格子上の量子ハイゼンベルクモデルの
モンテカルロシミュレーション

東大・理 高須 昌子，宮下 精二，鈴木 智雄

1. はじめに

2. 元三角格子上の量子ハイゼンベルクモデルに関しては，P.W. Andersonが，基底状態が
ネール状態でなく，Singlet pairsのresonating valence bondsになっていると言うにして以来，
多くの研究がなされてきた。特に最近では，厳密な数値的対角化による研究，
温度量子場のダイナミックスによる研究，も盛ん，また，実験の面でも，NaFQを
を中心に，このモデルの性質が調べられている。我々は，このモデルを，2章で述べるよう
な，量子モンテカルロの方法を用いて調べる。

2. 方法論

量子系のモンテカルロ計算は，比較的早くから行なわれており，いろいろな系に応用さ
れている。様々な種類の量子モンテカルロ法についても，文献(1)の解説記事に詳しい。
我々は，鈴木(2)によって示された，次のような拡張されたトロッター公式を用いる：

\[\mathcal{H} = \sum \frac{1}{n} \mathcal{H}_n \] (2)

ここで，ハミルトニアンを局所的なハミルトニアン \[\{ \mathcal{H}_n \} \] に分解した：

\[\mathcal{H}_n = \sum_{x} \mathcal{J}_n \] (3)

一般に， \[e^{-\beta \mathcal{H}_n} \] の行列要素を求めるのは難題であるが，局所的なハミルトニアン \[\mathcal{H}_n \] に
ついては， \[\exp(-\beta \mathcal{H}_n) \] の行列要素を求めることが可能である。我々が考えている三角
格子の場合，図2のような，4スピンのクラスターを，局所ハミルト
ニアンとしてとる。すなわち，

\[\mathcal{H}_n = -\frac{J}{2} (\sigma_x \sigma_x + \sigma_y \sigma_y + \sigma_z \sigma_z + \sigma_+ \sigma_-) - J \sigma_0 \sigma_0 \] (3)

また，モンテカルロ・フリップは，図2のような3種類をとる：

(a) グローバルフリップ…磁化 \[M = \sum \sigma_z / N \] を

変化させる

(b) ローカルフリップ…磁化Mは不変のままで，局所的に

(c) スピンフリップ…スピンをフリップさせ，

量子効果をとり入れる。

これら3種類のフリップを考えることによって，エルゴード性が保証される。つまり，無限長の時間の際に，
許される全ての配置が，原理的には実現される。
3. 結果と考察
まずはじめに、強磁性のハイゼンベルクモデルの場合について、計算を行なった。
その結果を、図3～図5に示す。トロッター数れに関する規則性を、例えば比較にいて調べると、図6のように、入力で収束するがことがわかる。厳密な量子井の結果は、大まかの極限で得られるが、それがあまり大きくないところでも、このように規則性がある場合、大まかの値を外挿できる。
一方、三角格子上の反強磁性体の場合は、フラストレーションを特有の問題がある。
（1）式のようなトロッター分解を行なったときの局所的なボルツマン因子の行列要素が、反強磁性体の場合、正または負をとりうる。正三角格子のような、フラストレーションしていない系では、（1）式の積の中にあらわれる負の項は偶数個であるから、全体として正となり、問題はないが、今考えている三角格子のようなフラストレーションした系では、全体のボルツマン因子の行列要素が負となりえる。そのような、負の行列要素を持つ配位の一例を、図7に示した。
このような系では、ある物理量
Aの期待値は次の式で求められる：

\[\langle A \rangle = \frac{A_+ - A_-}{Z_+ - Z_-} \] (4)

ここで、Z_+、Z_- は、正または負のボルツマン因子をとるサンプル数であり、A_+、A_- は、それぞれの空間での物理量Aの和である。

実際の系では、粒子数の割合である
Z_+/(Z_+ + Z_-) の温度依存性を計算したもので、図8（4個のスピノロ）と、
図9（36個のスピノロ）にあけてある。
これらからわかるように、温度が
下がるほどZ_+の比率は大きくなり、したがって格子が大きくなるほどこの傾向は顕著になる。
低温でかつ面が大きくなると、(4)式の分母は0に近い量となり、非常に精度の悪い計算を
していることになる。実験にさらに値を得るには、

\[\text{MCS} \sim \frac{\text{MCS} \times Z_+ + Z_-}{Z_+ - Z_-} \] (5)

程度かかる。但し、MCS は、A_+またはA_-が収束するまでにかかるモンテカルロステップ数である。[このような問題は、Villa の格子(フラストレートした正方格子)の
解の例の場合については解決されているが、三角格子について未解決である。]

以上のような事情に注意して、36個の反磁性スピノロについて、モンテカルロシミュレーションを行ない、図10、11、12のように、エネルギー、磁化\(\langle M^2 \rangle \)、磁化\(\langle M \rangle \)
\(\langle M^2\rangle = \sum_{\text{全て}} M^2 / 2 \)、A_+ 3 つの値（2）を求めた。
研究会報告

これらは、高温期では、Bakerらの高温微分と一致している。磁化率μの温度依存性をみとると、低温になるにしたがって、一重項状態に落ち込んでいく様子がわかる。これは鉱石による温度磁厚場の変数理論の結果と対応している。一方、剣格子磁化μは、温度を下げていくと上昇する傾向がみられ、トロッター数が小さいときは、古典的な性質が残っていることがわかる。しかし、トロッター数を増加させると、この傾向は弱くなり、量子系の場合、剣格子磁化はよい相対変数でないことを示している。

4. まとめ

以上述べてきたように、我々は三角格子上の量子ハイゼンベルクモデルの、磁性状の場合と、反磁性状の場合について、モンテカルロシミュレーションを行なった。現状の問題によって、Nekhoroshevの温度範囲については、計算が困難であり、今後の新しい工夫が望まれる。

参考文献

6) S. Fujiki and D.D. Betts : private communication.
11) 鍵木退雄, 官下晃二, 高須昌子: 量子系のモンテカルロ法 (数理科学 1985) 98