
~'t.11JJfJ't 47-3 ( 1986-12)

(19851f.Jl: )

Destruction of Quantum Coherence

Yoshitaka Tanimura

Department of Instrumentation, Graduate School of Engineering

Keio University

( 1986 ±f. 4 J1 16 13 ~l!I! )

~§'

:yc ~ tfWJi(7)t§]i{tffl ~c. J: Q]i-rj]$I¥J-T~'t1(7)!L:h~c. ~ \;\ -r 1JJf~ ~1T -:::> k.. o ~Jtvi 2 ~ (7)£1)

)tip C':> JJX: ~ j'[ -:::> -r \;\ Q 0 ft~66 (7)$)t ~i, -t: (7) liJfJ~~JW~c.:to \;\ -r Y}9f. ~ 7 /' ~~;t.b. t~t§]i{tffl L -r

\;\ Q~~{:V:)ffi-r~c. ~ \;\ -r~~ L tc. o 3 ~{:v: ~ 4 ~{:V:J»:-r(7) 2tX7't$~m(7)m~mfJTl¥J~C.*66 k.. o

~lli ~ :h tc.**5IHi, 7"? /', 7"? /'~{fl-, Iv "3: -* 'Y -e /' A ~c.Mr.t L k.. 3~ (7)rJi ~c. )t~lli* Q*
~~Ltc.o A~:7r-IV(7)~5~OC~c.MTQ~:x:tb~I±\L, ~~~1T-:::>tC.o 21i=§(7)$)t""0~i, ~f=z

1::: - v /' r-, J /'::Z 1::: - v /' r- $)t~01i1Lk..A~:7 r- Iv(7)-~:x:t~~lli Ltc.o tX~L.~~~ ~ t§]i

{tffl L-r\;\Q~~(7) 2 ~{:V:)ffi-rip C':> t~ Q"? A !J -jJm:x:t~.:c P - (7)jJt£ ~ ffl\;\ -r ~lli L-t: (7) A ~

:7 r- Jv~:x:t~*66tc.o 1 ~&rJ 2 ~(7))ffi-r*~C.MT Q¥~~JW(7)*OC~ft-r ~ -t: (7) A ~:7 r- Jv!W

~mfJTl¥J~L.*66tc.o 2 )ffi-r*(7)~--g-~i~cti:~C. J: Q{trff't1iJ~1b ~, -t::h~L.~\;\-r~~~1T-:::> tc. o

Destruction of Quantum Coherence

Quantum coherence of radiation-matter interaction is investigated. The thesis deals with two

problems; First, a stochastic model of a multilevel atom interacting with its environment randomly

in its excited states is considered. Analytical expressions of spectra of three- and four-level atoms

in the second order optical process are obtained. It is shown that terms in the expressions can be

classified into three types corresponding to the Raman, Raman-like and luminescence processes,

respectively. The total intensity of emission spectrum is also calculated and discussed. Secondly,

the general formula of power spectrum for the coherent and the incoherent parts is derived by using

the probability conservation relation. The master equation for a cooperative two-level atomic system

which interacts with the vacuum environment is studied by using Mollow's approach and its emission

spectrum is calculated. For a single- and coupled-atomic system, the density operators of steady­

state and the power spectra are calculated analytically. For the coupled-atomic system, the depend­

ence on an arrangement of atoms is discussed.
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CHAPTER I

Second Order Optical Process of Random Modulated Multi-Level Atom

§ 1. Introduction

The Raman scattering and luminescence are both second order optical processes

and have been a subject of active study for a long time. The interaction of the

system with its environment present in the intermediate states is called an i.n.Le..1t-

rnR.Jii..al..e. htai..e. -ini.vtacLi..on (IMSl). In the Raman scattering, the quantum coherence

is conserved, whereas it is interrupted in the luminescence by IMSI. Thus, a simple

three-level atom gives only the Raman scattering if the natural radiative damping

is the only mechanism acting in the excited state. The luminescence appears when

IMSI destructs the quantum phase coherence in the excited state. I)-g) Kubo and

hI'S collabor_atorslO)-15) h t - I d- d' h' d I h- ave ex enSIve y stu Ie . vanous stoc astlc mo e s, were

the perturbation from the environment (reservoir) is regarded as a stochastic

Markovian process, for the purpose of understanding the nature of IMSI in the

second order optical process. Since the stochastic approach does not rely upon

perturbative calculations, it is particularly useful to see how the coherent and

non-coherent parts are dependent on the relevant parameters of the problem chang-

ing from one extreme to another. However, the results are usually still so much

complicated that analytical expressions are not very transparent and one has to

appeal to numerical treatments in order to get physical understanding.

The present chapter reports an analysis of three-level and four-level atoms

modulated by the simplest two-state jump. perturbation which allows straightforward

algebraic treatments. This problem was treated by Takagawara some years ago,

but his expression of the emission spectra was still complicated and he showed only

some numerical examples. We found that the analytical expressions can be sepa-

rated into a few terms which correspond to different processes with different

character of coherence. Although we have not been able to discover the general

principle of separation, the achieved separation is by itself very interesting and

. seems to throw a light into the question of coherent and incoherent parts of the

second order process.'
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Destruction of Quantum Coherence.

This chapter is organized in the following way. The next section is a brief

summary of the stochastic theory of IMSI in the second order optical process. In

section 3, we calculate the spectrum for a three-level atom with a diagonal modu-

lation and discuss its features. In section 4, the spectrum for a four-level atom

with an off-diagonal modulation is calculated and discussed for three different

models. The last section is devoted to the summary and conclusion.

§2. formulation

A formulation of IMSI in second order optical processes in the stochastic

approach has been given by Kubo and his collaborators. 10)-15) In this section, we

present a derivation of the expression for emission spectra following the formulation

recently described by Kubo in a conference report. 16) A formula for the total

emission intensity is also given.

We consider an atom system S interacting with a radiation field <fl and a reser-

voir R. The system S has three groups of quantum states, namely the initial state

A, the intermediate state 8
1
, 8

2
, .... and the final state C. Concerning the

photon field <fl, the frequency of incident light is denoted by V1 and that of emitted

light by V2. In the second order process, the atom in the state A absorbs a photon

,V1, transfers to one of the intermediate states (if there are more than one such

states), and then transfers to the final state C emitting a photon V2. We ignore

the non-resonant process in which the atom transfers to the intermediate states

before absorbing V1. Therefore, the energies of the initial, intermediate and the

final states of the system S+<fl are represented by

b. =8.
1 1

and c = C + V2, (2.1 )

where we put tl=l. The interaction of S with the incident light is denoted by VI

and that with the emitted one by V
2

. for simplicity we assume that the system

S+ <fl interacts with its reservoir R only in the intermediate states. The IMSI is
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denoted by the Hamiltoni.an HI. Thus, the Hamiltonian of the total system is

written as

H = H <p + H + H + V + V
2 'tot s+ R I 1

when S is in B's, and

H = H + H + V + Vtot s+<P R 1 2 '

(2.2)

(2.3)

when S is in A or C. Here, H s+<P and H R denote the Hamiltonians of S+ <p and R

without interaction, respectively.

The density matrix for the total system evolves in time following the equation

p(t) = -i [H ,P(t> ) == -iHx P(t),
tot tot

where we have introduced the notation

OXX:: [ 0, X ],

xfor a hyper-operator 0 .

We assume the initial condition for eq.(2.4) as

P(O) = Ia>.<al p:,

where pO is the equilibrium density matrix of reservoir R satisfying
R

H~o = o.
R R

(2.4)

(2.5)

(2.6)

(2.7)

In a stochastic approach, the dynamical evolution of the reservoir R is replaced

by a stochastic evolution. Let r denote a state of Rand P (t) the probability for
r

finding R in the state r at time t.

to follow the Markovian equation

P (t) = - L f(r,r')P let).
r r' r

The stochastic evolution of P (t) is assumed
r

(2.8)

Thus, the stochastic operator r plays the role of iH~ in the foregoing treatment.

The IMSI is represented by the interaction Hamiltonian H (r) acting on S in the
I

intermediate states when R is in the state r. The dynamical part of HI (r) is the

adiabatic random modulation for each of the intermediate states. In addition to

this, there may be off-diagonal (nonadiabatic) modulation between the intermediate
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Destruction of Quantum Coherence.

states. It has been shown many years ago by Kubo that the evolution eq.(2.4) is

replaced by

.
P(t)

(2.9)

where H( r) is given by

H(r) = H .~ + H (t),
s+'¥ I

when S is in the intermediate states, and

(2.10)

H( r) = H ~, (2.11)
s+'¥

when S is in A or C. In eq.(2.9), the density matrix p (t) is considered as a vector

in the space of reservoir states. The component P r (t) is the density matrix of the

system S+ <1>, R being specified in the state r. The stochastic operator r operates

on this vector, while the hyper-operators operates on each components of the

vector. Hereafter, we denote a quantum state of S+ <I> by a bras or kets such as

la), Ib i) and Ic) or (ai, (bi I and (ct. Similarly state vectors of the reservoir

are represented by round bras such as (r \, I r), (P I or I Pl. In this notation

r (r , r') = (r I r I rO) (2.12)

in eq.(2.8) and P (t) =(r IP (t)l The equilibrium state of R is written as 10) or (0 I
r

and satisfies

riO) = 0

with the normalization

(010) = 1.

and (0 Ir = 0 (2.13)

(2.14)

Then the initial condition (2.6) is written as

P(O) = \a><a\·IO). (2.15)

(2.16)

By solVing eq.(2.9) with this condition, we obtain a transition probability P(c,t)

that the system has reached the final state c at time t starting from the initial

state a. This is given by

p( C, t) = (0 \ < cl P ( t>\ c> •

Per unit time, the rate of emission (photon counting rate) W( c, t) is given by
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Wec,t) = dPeC,t)/dt. (2.17)

By introducing the Laplace transforms of Pee, t) and We c, t) by

(00 -st
p[C,S] = J dt e Pec,t)

o
(2.18)

and

W[C,SI
(00 -st
J dt e We c, t)

o

SP[ c, 51 ,
(2.19)

the CW response is written as

We C,oo) I im We C, t) = I im sW[ c, S] •
t~ s-+-O (2.20)

The total intensity of emission integrated over all values of V2 or c is calculated

as

(2.21)

Based on eqs.(2.15)-(2.17), we can calculate the CW response in the second order

optical process. We expand the formal solution of eq.(2.9) to the second order of

t t'
P2(t) = f dt'J dt e-i(t-tt)(H~R+V1)(_iY~)e~i(tt-tll)(H~R+v~)

o 0

- it II ( HX +vx)
(-iyX)e SR 1 p(O),

2 (2.22)

where

i Hx = iH~r) + r.
SR (2.23)

from eq.(2.16), the transition probability is given by

)Ic> •

(2.24)

{ -it eHX +VX) O}ye 1 SR 1 p() 2

-i(t-t )(HX +VX){ -i(t -t )(HX +vX)y
+ e 2 SR 1 e 2 1 SR 1 2

-it (HX +vX) O}ye 1 SR 1 P( ) 2

f

t ft2 I I -i(t-t )(HX +VX)y -i(t -t )(HX +VX)
dt

2
dt1(0 <c ( e 2 SR 1 2e 2 1 SR 1

o 0

Pec,t)
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The photon counting rate can be written as

W( c , t ) = Jt d t I ( 0I<cIY2 e- i ( t - t I ) ( H- c +r +VI)

o

+ c.c.

Destruction of Quantum Coherence.

-it'(HX +v X)
e SR 1 P(OlY Ie>

2

(2.25)

Then the CW response eq.(2.20) is formally given by

W( C ,(0) = 1 im (01 <cl V . (H I) r "Y pe y Ie> + c. c.
s+o '2 S+1 -c + +1 1 2

where

e I . s 0
p = 1m +" (HX +yX) P ( ),

s+o S I SR 1

represents the equilibrium-density operator.

(2.26)

(2.27)

We further expand eq.(2.26) to the second order in Y1. First we expand p e.

The zeroth order term does not contribute to eq.(2.26). The first and second order

terms are given by

pi lim I ( -iyt) s p (0)= s+iHX s+iHx
S+O SR SR

lim I P(O) iY
1= s+iHX

+ ••••
(2.28),

S+O SR

e
lim I (- iYX) I (- iYX) s P( 0)P2 = s+iHx s+iHx s+iHX1 1
S+O SR SR SR

= lims+~HX ({S+i~...r Y1p(0)}\ +Y1{ S+il!-f+rP(O)\}I. (2.29)
s+o SR

where the irrelevant terms are omitted. The first order term eq.(2.28) has the

matrix elements <al pelb >, while pi has elements only between the
1 n

intermediate

states. Next, we expand the first propagator in eq.(2.26) of right hand side in

V1. The zeroth order term combines with P~ and the first term with Pf. The

final expression is given byl6)
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(2.30.1II)

~tts~

W(C,OO) = I I lim ((OI<cIV Ib.><b.1 f· 1'(H )lb.><b.IVla>
i jkl 5+0 2 J J s+ +yb +1 -c 1. 1. 1

x ! <c Iv Ib >* <b I ! Ib >* <b IV Ia>* I0) J( )S+f+l (a-c) 2 1 1 s+f+y +1 (H-a) k k 1 2.30.1
b

+ \ \ \ (01 <cl V Ib ><b I 1. Ib ) <b b I 1 . Ib b >
L L L 2 n n s+f+y +1(H-c) 1 l 1 rn s+f+2y +IHX j k
i jkl nrn b lJ

x <bjl s+f+y :i(H_a)lbi><bilvlla>10)<alvllbk><brnIV2Ic> (2.30.II)
b

1 1 *
+<blbrnls+f+2y +iHXlbkbj><bkIVlla><bjls+f+Y +i(H-a)lbi >

b b

X<b.lv Ia>*<b IV 1010)]
1. 1 rn 2

+ c.c.

Here, we have introduced the notation

<b.b.IAlbkb1> = <b.I{Alb ><b llib >, (2.31)
1. J 1. k 1 j

for a hyper-operator A operating on ~ bk><b11. In eq.(2.3 I), it is assumed that

the natural radiation damping of the intermediate states is given by aphenomenol-

ogical damping constant yb for the states B's. As we shall see in later sections,

eq.(2.30.I) comes from pi and gives rise to the Raman and broadened Raman parts.

Whereas eqs.(2.30.II) and (2.30.III) are due to pi and gives the luminescence part

and at the same time compensates the negative contributions from pi.
The total intensity of emission eq.(2.21) can also be calculated as

100 1
I = dC (0\<clv2 . (H ) r ·v pev2Ic>10) + C.C.

00 s+ 1 -C + + I 1

2JT L I (01 < cl v21 b >< b b I 2y !HXi!' lb. b > .
ij krnn n n rn b + I J k

X [< b .1 y b !(H )I b.>< b.Iv I a> I 0.)< al V Ib >< b I V I 0
J. + 1 -a 1. 1. 11k rn 2

1 * *
+ <bkIYb+i(H-al' b/<bjIV11 a>10)<bilvlla><brnIV21 0] .

(2.32)
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Destruction of Quantum Coherence.

§3. Three-Level Atom with Diagonal Modulation

In this section, we consider a three-level atom with a random level modulation

of the intermediate state B. Then, the IMSI Hamiltonian (eqs.(2.10) and (2.11))

is wri tten as

(3.1 )

The modulation n is further assumed to take only two values Q=±6 randomly with

the average jumping rate Ym= l/T m (see Fig. 1). This is called a fJuo--!Jta1.e jump

mode.1.. The modulation n is expressed in a matrix form as

n =
(

/1 0),
o -/1

(3.2)

for the space of two-state. The time evolution of the random modulation is

described by the operator

r = h' ( 1
m -1 -: ). (3.3)

The eigenvectors of r corresponding to the equilibrium state are given by

Other eigenvectors are

and (01 = ( 1, 1 ). (3.4)

and (1\ ( 1, -1 ). (3.5)

These eigenvectors satisfy the following relations:

(oln\ 0) = (tlnll) = 0, (olnll) (tln\ 0) = /1,

(o\rIO) = 0 and ( 11 r II ) = Ym • (3.6)

from eq.(2.30), the spectrum W is expressed
17)

as
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with

w= lim({ol ~ 10).1 (Ol ~ 10)
s+o Yb +r -1 (Wz -D ) s+ I (WI -uJz ) Yb +r + I (WI -D )

+ ( 01 ~ I I ) . 1 ( 11 1 Iy +f-dwz-D) y +1{WI-uJZ) Y +r+i{WI-Q) 0)
b m b

+c.c. (3.7)

WI = a-b and Wz = c-b. (3.8)

Here, we have set <cIV2Ib>=<bIV2Ic>=1, <alvllb>=<bIVlla>=l.

The spectrum W can be rearranged into a sum of three terms as (see Appendix)

with

w=w +w +W,
R BR L

(3.9)

(3.10)

W
BR

and

y
= 2 m. .----:----:

y Z + (w -uJ ) 2 (y +y ) z tuJ z (y +y )2 +w 2
m 1 2 b m 1 b m 2

Here,

(3.12)

y(W) = {y +Y )2-1UlZ
b m

and o(W) = ( )2 2Y +y +W
b m

(3.13)

can be interpreted as shifts of the damping rate and the frequency. which are

induced by the modulation, respectively. In eq.(3.12) the factors Wand W
a+b b+c

represent the absorption and emission rate, which are given by
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Destruction of Quantum Coherence.

W
a+b

and

1

= Re(OI rO( S"n IO )y + +1 W -
b 1

(3.14)

W
b+c

respectively.

(y +Y(W »)2 +(w -O(W »)2 •
b 2 2 2

(3.15)

from eq.(2.32), the total intensity of emission is calculated as

1
1 = 2rr·W -.

a+b Y
b

(3.16)

The first term eq.(3.10) represents a pure Raman process. It is composed of

a <5 -function at Wl=W2 and the intensity has the resonance form in which the

damping and the frequency are modified by the corresponding shifts eq.(3.13) with

W=Wl. The second term (3.11) seems to represent the Raman-like process, whereas

the third term (3.12) the luminescence.

In the static limit of Y+{), the third term (3.12) vanishes and the second term
m

becomes

W
BR

Then, we have

(3.17)

W = W + W
R BR (3.18)

This is an average of spectra of two pure Raman processes through the inter-

mediate state B+ll and B-Li. Thus, the second term can be interpreted as a part

of Raman process in this limit.

for a finite value of Ym' the luminescence appears and the Raman line of the

second term (3.11) is broadened to a Lorentzian form as the result of the first

factor of the right hand side. This broading is caused by the nonstatic IMSI,

through which the reservoir exchanges energy with the radiation. Thus, we regard

it as a Raman-like process and call it a broadened Raman term. The last three
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factors of eq.(3.11) determine the intensity. Because the Raman line is broadened,

these factors form peaks at frequencies where Wz conincides with the energy dif-

ference between either of excited states and the final state. It seems to be

natural that these peaks are caused by the resonant enhancement of the Raman

component. In eq.(3.17), though the last factor also has the maxima at the posi~

tions of resonance, this term does not show additional peaks. because of the 8-func-

tion.

In the motional narrowing limit of y »1 with t:::. 2 /y -+y' o(w)vanishes and
m m '

W
BR

Y(W) becomes y I. Then eq.(3.11) becomes

y' y
2-W

'
- __b_ W'

a-+b y +y' Y Y +y' b-+c '
b b b

where

(3.19)

y +y'
I b

Wa-+b = (y +y I )2-l{J.) 2
b 1

and W'
b-+c

y +y'
b

= (y +y')2..-<.U 2
b 2

(3.20)

In' this limit, each term of W can be expressed as a product of transition rates

and branching factors (See Fig. 2). Thus we have

1 y'
W = 2rr·O (WI -uJz) (y +yl)2+U) 2 + 2·W' y (y +y')

W'
a-+b b-+c

b 1 b b (3.21)

The pure Raman term W
R

becomes the first term of eq.(3.2l). The second term

represents the' luminescence and consists of three factors., The first and final

factors correspond to the transftion rates from A to B and from B to C by absorp-

tion and emission of light, respectiv'ely. The second factor" is composed of the

damping factor t/yb and a branching ratio y I / (yb +y ') between the Raman and

luminescence term in the' state B. It is. seen that W becomes a part of lamine-
BR

scence in this limit. Thus, WBR has both features of the Raman and lum'inescence

we expect that these factors may correspond to transition rates and branching
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Destruction of Quantum Coherence.

ratios. On the contrary, as the quantum coherence of photon is partially main-

tained, W
BR

can not be expressed by three factors as eq.(3.19). Thus, the

straightforward interpretation based on the branching ratios is not applicable for

a finite value of Ym. If we integrate each term of W eq.(3.9) over !.oz, WR' WBR

and WLmerge into a single term as eq.(3.16), which is a product of the transition

rate from the state a to b and the damping rate in the state b.

In the fast modulation limit Y~, WBR and VI,L vanishe. Then, we have

1
W= 2rr-O(Wl-uJZ) z z, (3.22)

Yb -+{JJl

which is equal to the spectrum in the absence of modulation.

figures 3 and 4 show the spectral distributions of W
BR

and WL normalized by

the total intensity eq.(3.14) for a set of parameters with wI=0.15,b.=O.5 and

Yb =0.01. In Fig. 3, WBR shows a sharp peak at the Raman position WI =Wz for

Ym'=O.O 1. Because of resonance, this term also shows additional peaks at frequencies

The Raman peak declines rather qUickly as Y increases. Already for
m

,1 m =0.1, the Raman peak becomes almost unnoticeable. (n Fig. 3, the luminescence

peaks at Wz = 0.5 are distinct for small values of Ym. When 1
m

becomes larger,

the additional peaks of WBR and two peaks of WL merge into a single peak and

are motionally narrowed.

§4. four-Level Atom with Off-Diagonal Modulation

Next we consider a four-level atom with intermediate states B1 and B2. The

IMSI from the reservoir is assumed to give rise to an off-diagonal interaction

between B
1

and B2• In this case, IMSI Hamiltonian is written as

- 2'17-



:Gtt5~

Hen) a 0 0 0

0 b
1

n 0
(4.1)

0 n b
2

0

0 0 0 c

Here, the modulation Q is assumed to be the same two state jump process as in

§3.

The interaction V1 connects A and B
1
• Concerning the interaction V2 between

B's and C, we consider the following three models: V
2

connects C with (1) 8
2

, (II)

B
1
, and (III) both B 1 and B

2
(See Fig. 5).

4.1 Model I

From eq.(2.32), W is given by 17)

+ C.c.

Where we set VI =V2= l.

to be

(4.2)

Here, the Hamiltonian H of intermediate state is assume

with its quantum states

<b I = [ 0, 1 ].
2 ••

(4.3)

(4.4)

[n eq.(4.2), the same notation as eqs.(3.2)-(3.5) are used for stochastic operators

and vectors.
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Destruction of Quantum Coherence.

The calculation of eq,(4.2) is elementary but tedious. We set

6 = (b +b ) /2 •
1 2

w.+ = w. ± w /2.
1._ 1.

Then the final result is written as,

where

(4.5)

(4.6)

W
BR

and

W
L1

with

Y2 m 0 _

y 2 +(W -oJ )2 {y +y )2 +w 2 (y +y )2 +w 2
m 12 bm 1 bm 2

(4.7)

and

(4.9)

(4.10)

Here, <Sew) and yew) are defined by eq.{3.13) and Y12 is given by

(2Yb +ym )li
2

(4.11)

The middle factor of eq.{4.8) coincides with the factor corre~ponding to the transi-

tion rate from B 1 to B
2

' which is given by

1

In eq.{4.6), the· pure Raman process cannot appear, because levels B
1

and B
2

are connected by the modulation Q and the quantum coherence of photons is dis-
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turbed by them. But the broadened Raman process which maimains the quantum

coherence not perfectly but partialfy srill exists.

coherence recovers perfectly and WBR becomes

In the static limit y +0, its
m

WBR = zrr-O(WI-W2) [y 2+(Wl-w'[:;"'~o2/4)2l[y 2+(WI-I[:;"+W "/4)21' (4.13)
b b 0

The right hand side of this equation has the form corresponding to the resonance

Raman intensity which shows maxima at two eigenstates of eq.(4.3).

In the motional narrowing limit Y »1 with [:;2/y +Y: the quantum coherence in
m m

WBR is completely disturbed by the modulation and WBR is given by

W 2 W' Y'I Yb.W'
BR = • a+bi y +y,'y' Y +Y' b2+c'

b b b (4.14)

Here, W'a+bl and W~2+c are expressed as

Y +Y'
, b and

Wa+ b1 = (y +y,)2.tUJ 2
b 1-

Then, W=W +W is written as
BR L1

y'

~2+c

y +Y'
b

(y +y,)2 ~ 2.
b 2+

(4.15)

w=
(4.16)

Here, the first and last factors correspond to the absorption process from A to

B'l and emission from B
2

to C, respectively. The middle factor represents the

transition process from Bl to B2, because Y12in eq.(4.8) becomes -y' in this limits.

Thus, eq.(4.16) corresponds to the luminescence process, which represents the tran-

sition A+B
l
+B

2
+C, and has no such branching as in eq.(3.2l).

The total intensity of emission is calculated as

(4.17)

4.2 Model II

This calculation can be done in the same way as in the subsection 4.1. The

final results is given by

(4.18)
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where

and

W
R (4.19)

W
L2 (

Y (W) Ym ] (Yb +Ym2 W 1+
a-+b1 Yb+Y (W

1
+) Y +Y - y;y

b m b m

Here, Wb1-+c is defined by

~1-+C = (y +Y (W »)2 + (W
2

-<5 (W
2
+))2 •

b 2+ - (4.21)

The factors (yb +Ym) / (yb -Ym) and Y 12 /yb (yb +2y12) appeared in the middle part of

eq.(4.20) coincide with middle part of eq.(3.12) and eq.(4.12), respectively.

In the static limit, WL2 vanishes and W is given by

W

This equation is similar to eq.(4.13).

Y 2+W 2
b 1+

(4.22)

In the motional narrowing limit, W becomes

W = 2lT-O(Wl ~2) (y +y,)2 -tW 2
b 1-

where

+ 2- W' -L [ 1 Y , ] Y , W'
a-+b1 Y +y' Y -. Y (y +21') Y +y' b1-+c

b b b b b

(4.23)

W'
b1-+c

Y +y'
b

(y +y' )2-+w 2'
b 2- (4.24)

for the general value of Ym, the total intensity of emission is written as

(4.25)
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4.3 Model III

The result for this model is obtained by only adding the result of model one

and two. Then, W is written by using eqs.(4.7), (4.8), (4.19) and (4.20) as

W=W +W +W +W .
R BR Ll L2

The total intensity of emission is written as

1
I = 'l:rr·W -

a+bl y b

(4.26)

(4.27)

This intensity is composed of the factor corresponding to- the transition from A

to B and the damping factor in 8 levels as eq. (3.16).

In the static limit, W=W R +WBR is given by

W

This equation contains two terms factors corresponding to two eigenstates.

In the motional narrowing limit, W becomes

W = 2rr·O (WI -wz) (y +y,)2 -+W i
b 1-

+ 2·W' ~ Y I [ylb - y: 1 y , _Wi
a+b Yb+Y I Y (y +'l:y ') y +y I bl+c

b b b

y' y'
+ .y (y +2y i)· Y +y I

b b b
W' }b2+c •

(4.29)

Each term of this equation is composed of the factors corresponding to transitions

A+B l' 8
1
-+8

2
, 8 2 -+ C, and branching factors as shown in Fig. 6.

For a finite value of Ym' it seems that each term of eq.(4.26) can be inter-

preted in the same way as in the motional narrowing limit. However, as there

is the quantum coherence in WBR , the simple branching scheme is not applicable.

If we put Wo =0, the solution eq.(4.26) agree with eq.(3.9). This is easily under-

stood as follows: The eigenstates of H (eq.(4.3)) are given by Ib? = (lb
1

>±lb
2
»/12

with eigenvalues b± t.. Though V1 connects Ia) with both Ib+> and I b_>, V2 con­

nects Ie> with only Ib >. Thus, the present model reduces to the model discussed
+

in §3 and eq.(4.26) reduce to eq.(3.9).

Figures 7, 8 and 9 illustrate the spectral distributions of W ,WLl and W L2
<Q~
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normalized by the total intensity eq.(4.27l, respectively. We set w1 =0.15, b.=0.5,

and "Yb=O.Ol as in figs. 3 and 4. The excited states are separated by wo=O.3. for

small values of Ym, Wu and WL2 show two peaks at frequencies of two eigenstates

of eq.(4.3l, respectively. In fig. 8, the left peak of WL2' which corresponds to

the frequency of eigen state near 8 2, is higher than the right, because 8
2

and C

are connected directly by V2 in the model one. Similarly, the right peak of W
L2

is higher than the left in fig. 9. When Ym becomes larger, two peaks of WLl

merge into a single peak at the frequency of W2= Wo/2 and these of W at
L2

Wz =-wo/2, as they are motionally narrowed.

§5. Conclusion

We have shown that each term appeared in the expression of spectrum can be

classified into three types. These three types of terms seem to have. meaning as

physical processes. One of them corresponds to the pure Raman process, which

maintains the quantum coherence. Another one is regarded as the luminescence

process, where the quantum coherence is perfectly disturbed by the random modu-

lation of lMSI. This type of term can be expressed as a product of three factors,

which seemingly correspond to the absorption, relaxation and emission processes,

respectively. The third type of term shows the broadened Raman peaks and can

be interpreted as the Raman-like process. This term becomes a part of the Raman

term in the static limit of Random modulation, but a part of the luminescence

term in the motional narrowing limit. It seems to be a reason of these mixing

features that the quantum coherence is destroyed only partially by IMSI in this

process. The present classification of terms has been derivedby the rearrangement

of the complicated formula and is not based on the direct calculation of each

physical process. Thus,. the correspondence between three types of terms and

physical processes such as the Raman and luminescence processes is not very trans-
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parent so long as we are concerned with CW response. It will be clearer, if trans-

ient responses are treated along the same line. We leave it for future study.

We have also calculated the total intensity of emission and have shown that

it is expressed by the transition rate from the initial state to intermediate state.

Appendix

The terms in eq.(3.7) can be calculated by using the following formula

1

and

(A. I)

with

1 ill
Yb+Y(W)+i(W~6(w))·Yb+Ym+iW (A.2)

and

(A.3)
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Figure Captions

fig. 1. A three-level atom with a diagonal modulation.

fig. 2. Branching features of the spectral of a three-level atom. in the

motional narrowing limit. The factors W' . and W' are defined by
a+b b+c

eq.(3.20).

fig. 3. Emission spectra of the broadened Raman term of a three-level atom

with a diagonal modulation.

Fig. 4. EII1ission spectra of the luminescence term of a three-level atom with

a diagonal modulation.

Fig. 5. A four-level atom with an off-diagonal modulation. The interaction VI

connects A and BL • Three models are considered for V2. as follows: V2.

connects C with B 2 (I) , B 1 (II) and both Bland B 2 (I)+(II)•.

fig.G. Branching features of the spectrum of a four-level atom in the motional

narrowing limit. The factors W~+bl' W~l+C and W~2+c are defined ·by

eqs.(4.15) and (4.24).

fig. 7. Emission spectra of the broadened Raman term of a four-level atom with

an off-diagonal modulation.

fig. 8. Emission spectra of the luminescence term 1 of a four-level atom with

an off-diagonal modulation.

fig. 9. Emission spectra of the luminescence term 2 of a four-level atom with an

off-diagonal modulation.
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CHAPTER II

Emission Spectrum of Two-Level Atoms

§ 1. Introduction

In studying the radiation-matter interaction, one sometimes assumes a system

of two-level atoms (molecule) as the simplest model, which has attracted an

enormous amount of interest.l),2) However, the first theoretical satisfactory

description was achieved relatively recently by Mollow.3) His paper deals with

a single two-level atom driven by a monochromatic electric field. The atom comes

into equilibrium with the field through the effect of a "natural radiation damping"

induced by the coupling between the atom and the radiation field at zero-ternper-

ature. He derived a "master equation" for the reduced density operator of atomic

system and calculated its motion. In a subsequent paper,4) Mollow investigated

the power spectrum of resonant fluorescence for the same model and found the

so-called "dynamical Stark effect".5)

The master equation for the collective two-level atomic system was first given

by Lehmberg6)-8) (see also Ref. 9). An interaction between atoms through a bath

causes "cooperative dampings"lO)-15) and "cooperative Lamb shifts,,16) which· depend

on the arrangement of atoms. As shown by Dicke,17) a system of N two-level

atoms may be treated equivalently as a system with angular momentum J~ N/2.

He used this feature and investigated a spontaneous emission (no driVing field)

of a collective two-level atomic system with use of the perturbation theory. The

main result is the prediction of the "supperradiance" effect. 18)-28) Concerning

this problem, a considerable amount of work on the spontaneous emission has been

done with the use of the master equation approach.29)-41) All of these calcula-

tions are based on the assumption that atoms are distributed over a small region

(small-sample model). In this case, cooperative damping agrees with the natural

radiation damping and the master equation becomes quite simple.

The emission spectrum of collective atomic system which is driven by the

monochromatic electric field was first given by Agarwal et al.42),43) They used

a small sample model and obtained numerical results for the cases of two and
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three atoms. In the subsequent study, Agarwal· et ale calculated the same model

of two atoms analytically and showed the existence of additional sidebands of

spectrum.44) Several investigations have also been done on this subject.45)-48)

However, most of the treatments have used the small-sample model and the master

equation which includes the cooperative effects more precisely has not been

studied.

The main purpose of this chapter is to investigate the power spectrum of

cooperative atoms which may be distributed over a region large compared with

the resonant wavelength.

This chapter is organized in the following way. In the next section, a general

formulation of the coherent and incoherent spectrum is developed. In §3, we

derive a master equation by an approach different from that of Lehmberg. Section

4 gives a cooperative emission spectrum. In §5, practical calculations for the

models of single atom and two atoms are given. The last section is devoted to

the conclusion and brief summary.

§2. Coherent and Incoherent Parts of Soectrum

We consider a system, which is denoted by the Hamiltonian H and its density

operator P (t). The equation of motion is written as

P(t ) = - iLp ( t) ,

where we have put 1'1= 1. The quantal Liouville operator iL is defined by

iLX = i [ H, X 1

(2.1 )

(2.2)

for an operator X. The density operator satisfies the probability conservation

relation

tdpCt)} const,
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since

t d P<t)} = - i t r{ H p Ct ) -P Ct )H} = O. (2.4)

As is well known, a power spectrum is expressed by the fourier-Laplace trans-

form of the correlation function of a physical variable, for example, a dipole

moment of an atom, or a magnetic moment of a spin. We put its creation and

annihilation ,operator 0+ and 0-, then

I (V) ; Re { 1im rOdt e - s t <0+ (to) 0- Cto +t ) > IS= i v+e:} ,
e:-+o 0

(2.5)

+
where 0- Ct) are the Heisenberg operators and their time evolution is determined

by the Hamiltonian. We introduce the unitary time-evolution operator Uc t 2, t 1 )

which is defined by the relations

and

d--Uc t2 ,tl)
dt2

Uc t 1 ,t1) = 1.

- iH U< t 2 , t 1 ) (2.6)

(2.7)

Its solution is expressed as

UCt2,tl) = exp[':'iHCtz-tl»).

The density operator for the system at time t 2 is then given by

This is equivalent to the formal solution of the Liouville equation (2.1)

(2.8)

(2.9)

PCt2) exp[ -iLCt2 -tl) ]PCtl). (2.10)

The Heisenberg operator 0 Ct) is also expressed by

with

Dca) = O.

The correlation function appearing in eq.(2.5) is now written as 49)

(2.11)

(2.12)

<O+Ct)O-Ct'» = Tr{Uco,t)O+U<t,O)UCO,t')O-UCt' ,O)P<O)}

= Tr{O-UCt' ,t)P<t)O+U<t,t')}

= Tr{ 0- exp[ - iL Ct' -t) ](p (t )O+)} •
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The power spectrum eq.(2.5) is then give by

I(v) = ..!Re { lim tr{O- (s+iL) -1 (peO+)} I '}
'IT E-+Q S = i V+E • (2.14)

where we have replaced the density operator to the equilibrium one. assuming

that after a long time the system has reached the equilibrium state uniquely.

The equilibrium density operator satisfies the relation

and is expressed in the Laplace transform as

(2.15)

where

limp (to)
to-roo

lim sp [ s! ,
5+0 (2.16)

f
CXl

-stpes] = dt e pet).
o

The evaluation of the .hyper-operator iL is given in Appendix A.

(2.17)

Note that eq.(2.14) can be interpreted as the time evolution of the system.

The state of the system is initially in the equilibrium, then the creation operator

0+ makes it nonequilibrium (excited) one. That state evolves in time followed

by the resolvent (s+ iL )-1. Finally. the annihilation operator 0- returns the

evolved excitation to the equilibrium.

Now, we derive a general formula of power spectrum for the coherent and

incoherent scattering. We put constant in eq.(2.3) is unity. Then,

tr{p(to)} = 1. (2.18)

We assume that this equation is only one restriction relation between the elements

of the density operator. Let us consider the projection operator Q which projects

the density operator onto the equilibrium. We define Q by

We also define another projection operator Q' by

Q' = (l-Q) = 1 - pe tr{
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It can be shown that Q and Q' satisfy the following relations

and

QQ' = Q'Q = O.

From eq.(2.15), Q and Q' also satisfy

QiL = iLQ = 0

and

Q'iL = iLQ' = iL.

The density operator is decomposed -into two components

PCt) = p
e

+ Q'PCt).

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

By using eqs.(2.24) and (2.26), the Laplace transform of eq.(2.l) is expressed as

peS] (s+iL)-1 pcto )

lpe + (s+iL)-1Q'p<to)'
S (2.27)

Then we can write the resolvent Cs+ iL) -1 as

where

and

Equation (2.30) satisfies

I im s g (s ] = O.
s-+o

therefore, the operator g( s] has no element proportional to 1/5.

The formal solution of eq.(2.1) is then given by

J
C + iCO

e 1 st
pet) = p + 2rri d~ e g(SlP(to),

C-l.CO
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where c is taken to the right of all si~gularities in integral. This solution has

separated the equilibrium part from the unsteady-state one. The operator (j [ s l

denotes the time evolution of the unsteady-state part of P ( to) and when the density

operator coincides with the equilibrium one, the second term becomes zero. Here-

after, we call (j [ s l the "unsteady-evolution operator".

Above discussion also allows us to separate the power spectrum into two parts.

From eqs.(2.28)-(2.30), we may write eq.(2.14) as the form

I (\I) = <5 (\I) Icoh + Iincoh(\I) ,

where

and

incoh 1 {- e+ I
I (\I ) = IT Re t r 0 (j [ S] (p 0 )} s = i \I

(2.33)

(2.34)

(2.35)

The first term eq.(2.34) corresponds to the coherent part of the ppwer spectrum

and i~ proportional to the square of the absolute value of the induced dipole

moment. The second term eq.(2.35) is the incoherent part. Its form represents

the time evolution of the system as like as eq.(2.14), but the evolution is now

.. d b h" d l' "r. 51) Th "lOb " d 0governe y t e unstea y-evo utlon operator ~ [ s J. e equl 1 num enslty

operator and hyper-operators eqs.(2.29) and (2.30) are evaluated in Appendix 8.
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§3. Master Equation for Two-Level Atoms

We derive a master equation describing the dynamics of two-level atoms which

are interacting with a vacuum bath and classical (c-number) electric field by

using Mollow's method. 3
) This equation has been obtained by Lehmberg7) by inte-

grating the Heisenberg equation of motion directly. Our derivation is essenti~lly

similar to Agarwal.38)

3.1 Hamiltonian

Let us consider a system A of N two-level atoms at positions r 1.' r 2' "" c>, r N

The excited and ground states of j-th atom which are separated by energy Wo

(here after we put 11=1) are denoted by \1>. and \ 0>., respectively. For these
J J

states, annihilation and creation operators are written as

and

a. = 10> .. <1\,
J J J

a~=I1> ..<ol.
J J J

(3.1)

(3.2)

These atoms are supposed to be driven by classical (c-number) external field

resonant or quasi-resonant with the atomic frequency Wo.

the field is given by

At the position r. ,
J

E. ( t ) E. [ i Ocor . -wt )
J = e J

i ( -k·r . +Wt ) ] / '2
+ e J eo v,L., (3.3)

where w, k, E. and eo are the frequency, wave number vector, field amplitude

and polarization vector, respectively. Atoms also interact with each other through

dipole-dipole interaction. The dipole moment operator for the j-th atom may

be expressed in terms of the dipole matrix element d. = .<llu I0> . as
J J J

U. = d. (a~ + a.), (3.4)
J J J J

in which we have assumed that with proper choice of wave function d. can be
J

made real.

The Hamiltonian for the system A is given by

H (t) = H + H + H (t),
A S d E
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where H is the atomic energy
s

H = r woa~a.,
S j J J

and H
d

is the dipole-dipole interaction

H =r V'ka~,\,
a jk J J

with

(jtk)

(3.6)

(3.7)

v =~ [(d .• d ) r~ - 3( d .• r . k) ( dk • r . k ) ] •
jk r jk J k Jk J J J

( r = r -r )
jk j k (3.8)

The interaction between electric field and atoms is expressed by the "rotating-wave

approximation" (RWA) form as

'Wt * -iWt +
H (t) = - r(R. e1 a. + R. ea. ),

E j J J J J

where we define the complex Rabi frequencies as

(3.9)

(3.10)

Now, we assume that the system A of atoms are coupled to a bath system

B. The energy of bath system is then given by

H = r w b+b .
.~ q q q q (3.11 )

where annihilation and creation operators band b+ satisfy the commutation
q q

relations

[ b , b+, ] = <5 "
q q qq

for the combined system A+B, the Hamiltonian is now written as

where H (t) is the unperturbed Hamiltonian with respect to the bath
o

H (t) = H (t) + H ,
o A B

and interaction H is assumed to be have RwA form
I

+ * +H = - ir (g. a. b - g. a .b ),
I jq Jq J q Jq J q

in which gq'S denote coupling constants.
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3.2 Derivation of Master Equation

The density matrix for the A+B system is denoted by 0 Ct), which follows the

equation of motion.
O(t) = -iLHCt)OCt), (3.16)

where L
H

Ct) is the quantal Liouville operator acting on a Hilbert space operator

X as commutator with the Hamiltonian operator:

- iL Ct ) X = - if H Ct ) +H , X ].
HOI (3.17)

Here, we introduce an unperturbed time evolution operator Ul (t), which is defined

by
.
Uo(t) (3.18)

and

Uo (t) = 1.

Its solution is written as

Uo(t) = eXP+[-iftHo(L)dL]
o

(3.19)

(3.20)

in the ordered exponential form. Then, the interaction picture operators 0 I (t)

and H (t) are defined as
I

O'(t) = U~(t)O(t)Uo(t),

and

HI ( t) = Uo ( t )HIU~ (t ) •

In this picture, eq.(3.16) becomes·

.
o I ( t) = - iL (t) 0 I (t ) ,

I

or equivalently

O'(t) = O'(t') - iJtdt 1 L (tdO'(td,
t l I

where
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The difference

6p '. Ct) = P , Ct +6t) - p' Ct ) , (3.26)

can be calculated from eq.(3.24) by iterating itself

f

t+6t ft+6tft1
6p , ( t) = - i dtIL I Ct 1 ) P , (t ) - dtIdt 2 L (t 1 ) (L Ct 2 lP r (t ») + •••••

t t t I I (3.27)

where 6 t is a time smaller than the time scale characterizing the system.

Let us assume that the bath B is initially at zero temperature and atoms are in

an arbitrary mixed state. The initial density operator for the system is then given

by

p(O) = P'(O) = p'collo> <01.
A BB (3.28)

We further assume that the excitations which are induced in the bath by its inter-

action with the atoms remain so small in the characteristic time of the atom

system. Then, the bath may be approximated at any time by its initial state,

and the density operator for system of atoms and bath at time t is written as

p'Ct) =p'ct)lo> <01.
A BB

The reduced density operator P A for the system A is given by

P , ( t ) = Tr {p' Ct )} •
A B

(3.29)

(3.30)

The relation between the Schrodinger picture and the interaction picture is now

expressed as

p 'Ct)
A

where

U'o (t)PA (t)U'~(t), (3.30

UfO (t)= exp~J - iftH (T )dT].
o A (3.32)

From eq.(3.27), keeping terms up to the second order in L Ct " we obtain
I

f
t +6 t ft +6 tf t \

lY,p'(t) = -iTr { dtl L Ctl)P'Ct )} - Tr ( dtl dt2 L (tl)(L Ct2)P'Ct »)}.
A B I A B I I A

t t t (3.33)

In the right hand side of this equation, terms involving

~298-



and

Tr {b I (» < 01 b"1 ,
B q BB q

Destruction of Quantum Coherence.

(3.34)

Tr {b+\ 0> <01 b }, Tr {b b+J 0> <O\} ••••••
B q BB q I B q q BB

(where q~q I) vanish by taking the trace over the bath states. Thus, we have

(3.35)

~ t LL g~ g { CdTe i ( Wq -Wo ) T a .p , ( t ) a + .
jkq Jq kq 00 J A k

fcc [e-i(W -Wo)Ta+a '( ) + ei(W -Wo)T '(t)a a+]}
- dT q j kPA t q PA j k '

o (3.36)

where we have evaluated the double integral of the second term of eq.(2.33) as

(see Appendix C)

f
t+~tftl r
dtl dt2 L (tl)(L (t2)P'(t») = ~t dT L (t+T)(L (t)P'(t»).

I I A I I A
t t 0

(3.37)

We will now take the limit L 3-+00 so that the summation over q should be replaced

by an integral over the continuum of modes, i.e.

L -+-
q (3.38)

where w=ck and ct'2 denote a solid angle. We introduce

W
2

N(w) = 2nc3' (3.39)

and

(3.40)

Then dividing eq.(2.36) by ~t, we get the "coarse-grained" time derivation of

PA in the form

(3.41)

Here, we put

(3.42)
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and

J r 2 -i(W-wo)l
K +io = dW dT N(Wlg (w,rJok)e

jk jk 0

More explicitly, these parameters are then given by

(3.43)

(3.44)

and

(3.45)

Transforming eq.(3.4l) to the Schrodinger picture, we have

P• ( t l = \' (K 0 a p ( t ) a+ - K ° { a~a , PA ( t) } - iO )0 k ( a +)0 a
k

, PA ( t l ])
A ~ jk j A k Jk J k

R iWt +R*e-iWta+ P (t) ] - i\' V (
+ i~ ( J" e a)" J" )0' A L. jk

j jk

- i~ Wo [ a~a" ,P ( t) 1,
j J ) A

where {} denotes an anticommutator.

(3.46)

In the following, we consider that the system B represents the electromagnetic

field into which atoms radiate (vacuum field).

given by

The coupling constants are now

(3.47)

Here, L3 is the volume in which the field is enclosed and will eventually be

taken to infinity, and ekA is the polarization vector possessing the property

L eCi
.; = 0 - k .• K...A kA kA CiS Ci-~

where K is the unit vector in the direction k.

(Ci,S =x,y,Z), (3.48)

(3.49)

Then, the damping factors K~k and Kjk' are calculated as (see Appendix D)

K = ~Ko = Ko" = 2d 2wo 3 /(31Tc 3
),

2 j j ) )

and

Here, W
jk is defined by

K
jk

~v (Wo)
jk
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with

(.3.51)

and

Ajk
[(d,-d) - (d,-r, )(d -r'k)/r'k211d2,

J k J Jk k J J (3.52)

(3.53)

In eqs.(3.49)-(3.53), It is assumed that d= Id, I. The constant K is responsible for
~

the "natural radiation damping" and the Yjk the "cooperative damping" which are

due to the presence of other atoms. 10)-15) From eqs.(2.45), we may be evaluated

the "cooperative
16)

frequency shift" iO jk' Using a contour integral, we obtain

ojk = KVjk (wo ) ,

where

( j ~k) (3.54)

if, cos(wr 'k/c ) [Sin(Wr ·k./C ) cos(wr 'k/C )}
V J B J J

jk(W) = 2 jk (wrjk/c) - jk (wrjk/c)Z + (wr
jk

c) •
(3.55)

The "Lamb shift" i6., would diverge logarithmically were it not for the frequency
JJ

cut off. It's value is not shown here, as it can be renormalized into Wo' The

master equation (3.46) now becomes

where

P (t) = -iL (t)P (t),
A A A (3.56)

-iL (t)X = L (2Ka,Xa+ - K{
A j J J

+ +
a, a" X} - iwo [ a, a" X ])

J J J J
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§4. Power Spectrum of Emission Field

4.1 Correlation function

For a general field operator A, let A+ denote the positive frequency parts

and A-the negative frequency part, that is

(4.1 )

Quantum electrodynamics tell us that an electric field operator E( r , t ), which

is the solution to the Maxwell equations, is expressed in the Heisenberg picture

38),50)
as

E± (r , t) = E± (r , t) + VxvxZ± (r , t ) ,
f

where E± is the homogeneous solution and Z± is the Hertz dipole operator
f

n

r (r ,t) = L d. a. (t -I r - r . II c )I I r - r . I .
.. . . j=l ) ) J J

In the scattering region I r I»1 r j I, the distance Ir -r j I may be written as

Ir - r.1 = r - t. r ,
J j

(4.3)

(4.4)

where r=rt. We must take care to approximate the operator a. (t), as it has
J

the rapidly varying phase factor. To separate out the unperturbed time dependence

(rapidly varying part), We write

a . (t) = a ~ ( t ) e- iwo t .
J J

This separation allows us to make the approximation.

Then we may write

a.(t-Ir-r.l/c) = a.(t_r/c)eiwor.rj/c.
J ) J

The Hertz dipole operator is now given by
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26)
and the emission field eq.(4.2) may be expressed in the scattering region as

SInce the field is initially in the vacuum state, the homogeneous field operator

E~ ( r ,t) will not contribute .to the normally ordered field correlation function:

G( t ,t')

where

We will

0- (t) = ~ d. e iwor• r / ca. (t) •

j =1 J J

assume that the atomic system is

(4.11)

stationary and the correlation function

is invariant under the transition of time, that is,

+ -
G( t. t') = <0 (t)O (t'».

where the proportional constant is omitted.

4.2 Power spectrum of emission field

(4.12)

The Liouville operator of system is given by eq.(3.5). We may impose the

time dependence of Liouvillian on the density operator with use of the time evolu-

tion operators

U (t)
E

and

+
expC -iwtEa. a. 1,

j J J
(4.13)

+
ur(t) = expCiwtEa.a.l.

E j J J

These operators satisfy the relations

U (t)a U-(tr= a e- iwt
E j E j ,

+ + . t
U (t) a ur ( t ) = a e~w •

E j E j

In obtaining eqs.(4.15) and (4.16) we have used the formula
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eLAe- L = A + [ L, A· 1 + 2 ~ [ L, [ L, All + "••• , (4.17)

(where L and A are operator) and the anticomutation relation

(4.18)

Then by multiplying both sides of eq.(3.56) by U (t) from the left and lJ Ct > from
E E

the right, we have (ignoring suffix A)

where

pet> = -iZp<t), (4.19)

(4.20)

-lx = L (2Ka.Xa~ - K{ a~a., X}+ i(w-wo)[
j ] ] ] ]

+a.a., Xl)
J J

+ L (2Y·k a .Xa: - Y'k{ aJ~ak' X} - inJ·kI aJ~ak' X])
jk J J J

* ++ iL [R. a. +R. a., X ].
j J ] ] J

(jj:k)
(4.21)

With use of eqs.(4.l3) and (4.14), the correlation function eq.(2.l4) can be written

as

+ -,
<0 (t)O (t » tr{O-U(t' ,t>U-Ct)U (t)P(t>U-Ct>U Ct>O+UCt,t')}

E E E E

{
- , - _ +. , } ~ iwt

tr 0 U(t ,t)U (t>PCt)D U (t)U(t,t ) e
E E

{ - ['-, 1(- D+ )} ~ iwtt r D exp - iL Ct -t) P ( t ) e •
(4.22)

Then the power spectrum is now calculated from eq.(2.l4) by the simple replace-

ment iv+ -i (w-v) as

lev) = J..Reflim tr{D-cs+iZ)-l(peo+)}1 '( ) 1.
1T . k+o s= - ~ w-v +e:1 (4.23)

We may also calculate the emission spectrum of the coherent and incoherent part

from eq.(2.34) by the replacement iv+ - i(w-V), as~ equation (4.19) satisfy the proba­

bility conservation relation eq.(2.3).
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§5. Single- and Two-Atom

5.1 Single-atom case (Mollow's model)

for an atom which is separated enough from others, the cooperative effects

are not present and eq. (4.19) reduces in this case (ignoring the suffix j, k) to

where

pet) = - iLp et ) , (5.l)

- iLx = 2< aXa+ - K{
+a a, X} + i (w-wo ) [

+a a, x ] + i [ R( a+a+), X ]. (5.2)

Here, we have assumed that the phase R can be made real.

The vectors eqs.(A.3) and (A.5) are defined by

~ = [ 11>< II, 10>< 01, 10>< 11, \1><01 ],

and

11>< 11

10><01

\1><01

10>< 1\

The operator eq.(4.20) is written as

PCt) = ~.Pet).

where

p(t) = PI

P2
-iwt

P3 e

iwt
P4 e

(5.3)

(5.4)

(5.5)

(5.6)

from eqs.{A.7). and (A.B), the master equation (5.2) is expressed in the matrix form

as

p(t) = -if. Pet).
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~fts~

where

iL = [ K iE ],
iEt W

K = [ 2< 0 ], w= [ z ~~ ] ' E=R[ -1 1 ] .
-2< 0 0 1 -1

with

Z = K + i (w-wo ) ,

~

Z = K - i (w -wo ) •

(5.8)

(5.9)

(5.10)

(5.1l)

Then, the matrix appearing in the Laplace transform of eq.(5.7) can be written

as

(S+ iL)-1

[
1 1 -E I l' (5.12)

G[ sl - G[ s] I S.m

1 . t 1 lIt 1 1 1s.m IE G[ s] S.m - S-tW E G[ s] E S.m

where the fractional expressions stand for the inverse matrices. In this equation,

we define

S + K + Et--I_E
S-tW

S + K + g(S)( _~ (5.13)

where g(s) represents to the effect of the driving field,

I 1
g (s) = R2

( - + -~ ).
S+Z s+z

The equation (5.1) satisfies the conservation relation

(5.14)

p + p = const, (5.15)
1 2 .

and we can remove the one element P2' Then, eqs.(B.16), (B.20), (B.30) are given

by

p<t>
y = [? ]'-lR

iR
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The reduced matrix is now written as

iL' = [ I<" iE'] ,
2iE=' w

where

E' = ( -R, R I.

(5.17)

(5.18)

The similar manipulation of eq.(5.12) permits us to write down the inverse matrix

in the form

=_1[ 1Os]
2Rh(s)

2Rh(s)*

where

(5.19)

and

G[s]
s + 21<" + 2R2 (h(s)+h(s)*) (5.20)

h(s) = i/(s+z). (5.21)

The elements of the steady-state density operator are then calculated from

eq.(B.29) as

e pi 1 g(O)P =
G(O]

i5~ 21<"+g(0)

iwt iwt
p~e -2iR e /z

-iwt1
-iwt

i5:e 2iR e /z*

The dipole operator D and D+ are now given by

(5.22)

D = da, and
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As shown in §4, the power spectrum is calculated from eq.(B.3l) with the replace­

ment i\)+-i(W-V). The matrix eq.(B.34) is calculated as

H(sl = h~::~[ 2R2 +(s+2K )(s+z), 0, a~~~ R{2(s+z*)R2 -(s+2K )(s+z)}, 0 I
(5.24)

and we 'have

Then the power spectrum is finally given by

coh incoh
I(V] = O(v-w)l + I(v],

where

5.2 Two-atom case

(5.25)

(5.26)

(5.27)

(5.28)

We now consider two atoms 1 and 2 with the excitation energies, Wl and W2,

measured from the ground state. The distance between two atoms is r and we

express the cooperative damping eq.(3.50) and shifts eq.(6.54) as y and Q, respec-

tively. The master equation (4.21) is given by

where

(5.29)

2K (a Xa++a Xa+ ) - K{ a+a +a+a , X}
1 1 2 2 1 1 2 2

+ i (w-w ) [ a+a , X } + i (w-w2)[ a+2a2' X
. 1 1 1

+ + + + X } on {
'>v (a Xa +a Xa ) - y{ a a +a

1
a2 ' + h,+ ""f 1 2 2 1 2 1

.. + .. +
+ i [ R

1
a

1
+R

2
a

2
+R

1
a

1
+R

2
a

2
, X }.
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The dipole operators of system are now expressed as

(5.31)

It is helpful to note the formal identity between states of two-level atomic system

and those for a single system having an angular

the base of atomic system as the triplet states

11> = I0> 11 0> 2 '

I2> =*(11> 11 0> 2 + \ 0>1\1> 2) ,

13> = 11>111> 2 '

and the one singlet state

The density operator eq.(4.20) is expanded as

P(t) =t-PCt),

where

17)
moment. We can choose

(5.32)

(5.33)

(5.34)

(5.35)

, (5.36)

t t
A

, t
B

, t;, t c ' t* ],c

with
t

A
[ 11>< 11 , 12><21, 13><31 , '1 4><4\ ],

t
B

L 11><21 ' 12><31, 1 1><3\ ]"

t = [ ,1 1><41, 14><31, 14><21 ],
c

and

P< t) = p
A

P
B

-*P
B

Pc
-*p
c
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with

P
A

P -iwt P -iwt (5.42)pse p e
B c 8

-iwt -iwtp e p e
6 9

P e-2iwt
PlO7

The matrix form of the Liouvillian is given in Appendix E. The energy levels

and damping rates of the system is illustrated by Fig. 2.

Equation (5.29) satisfy the probability conservation relation

Pl + P2 + P
3

+ P
4

= const, (5.43)

and we can remove the one element P4 from Pet). Then we have

(S+iL')-l = [ S-A' iE' r' (5.44)

iE"t S+B

where

* * (5.45)A' K' iE' -iE' iE' iE' -iE'
A A 1 1

iE,t *W 0 iE
2

iE
A A 3.

-iE,t * *0 W -iE -iE
A A 3 2

and

iE"t = iE~ iE~ _'E
t I B li::

iE 1.
(5.46)1 3 ' B

* iE= -iE= *-iE" W
1 3 2 B

The matrix elements in eqs.(5.45) and (5.46) are also matrices and are given in

Appendicies E and F.

Here, we consider the case

d = d = d
1 2

This assumption reduces to

and (5.47)

R = 0, and
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The inverse matrix eq.(5.44) then becomes

(5.49)

The inverse matrix (S+ iAr 1 is given by

1
G[ sl

(S+ iA' )-1

- [
1 . t 1

S-+W l~ G[ sl

1 .E 1
- G[ s 1 1 'a.S-+W

lIt 1
S-+W - S-tW ~ G[ s1

(5.50)

where

S-tK+g[ s]

E = [iE -iE * ]
(l A' A •

1
S-+W = [ S;A (5.51)

The matrix g[ s 1 is defined by

-1 t -1 tg[ s 1 = E (S-+W) E = E (S-tW) E + c. c .
(l (l A A A (5.52)

which corresponds to the effect of driVing force. More explicitly, g[ s] is given

by

g[ 5]

[
gl +ge -gl -ge

]
(5.53),

-gl -g3 gl +g2 +g3 -g2

g -g -g2 -g3 g +g3 e 2 e

where

gl (s+b) (s+c)R2 /detl + c.c. (5.54)
+

g2 (s+a) (s+c)R2 /detl + c.c. (5.55)
+

g3 -2(K +y) (s+c)R2 /det 1 + c.c. (5.56)
+

ge = ~ /det 1 + c.c. (5.57)
+

and

detl 53 + 52 (a+b+c) + 5(ab+bc+ac+2R2
) +c(R2 +ab). (5.58)

+ +
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The variables a, b, c are given in Appendix E. In the complex conjugate appearing

in eqs.(5.54)-(5.57), we have assumed that the parameter s is a real constant.

The connection of levels are illustrated in Fig. 2. The calculation of eq.(5.50)

can be done by the manipulation of 3x3 matrixes. Several elements are calculated

as

F
13

-1
={[s+2(K+y)]g +A}/detG, (5.59)= G

13
[s I

e

F
23

-1
[(s+4K)g + 2(K+y)g + A]/detG, (5.60)= G

23
[S]

2 e

F33
-1 [S2 + s(6k+2y+2g +g +g +g )= G
33

[SI =
1 2 3 e

+ 8K(K+Y) + 4K(g +g +g ) + 2(K+y)g + Aj/detG,
1 2 3 e (5.60

where

detG = S3 + s2(8K+2g +2g +g +g )
1 2 3 e

+ S[4(5<2_y 2)-2(3<-y)(2g +g )+4(2K-y)g +l2Kg +A]
2 3 . 1 e

+ 8 (K -y) [2K (K +Y ) -H( (gl +2g
2

+g3 ) +2 (K+y )ge +A]. (5.62)

and

A = gl g2 + g (g +g +g ).
e 123

By using these elements, another elements of F are written as

(5.63)

f 43 = { [(s+b) (s+c)+R2 ]f + R2 F
b

} iR /det 1, (5.64)+ a + +

FS3 = { [(s+c) (s+a)+R21F + [2(K+Y)(S+c)+R2 ]F} iR /detl (5.65)+ b + a + '

F63 = { [s - 2 (K +y )~b ]F - (s+a)F }R2/detl, (5.66)
a b +

where

F = f - f = [(5+4<:)g -sg l/detG, (5.67)
a 23 13 2 e

f = f - f [s2+s (6c+2y+2g +g )+&«K+y)+4<:(g +g )]/detG. (5.68)
b 33 23 1 3 1 3
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The state populations in the equilibrium are calculated from eq.(B.29) as

where we put

pel = {-(K+Y)go+AO}/B
e '

pe
2

= {-4KgO-2(K+y)gO+AO}/B
2 e '

pe
3

= {4K (2K_gO_(To _gO) -2 (K+y )gO +AO} IB
1 02 3 e '

e
p4 = 1 - Pl - P2 - P3'

(5.69)

(5.70)

(5.71)

(5.72)

and

g~
~

AO = AI
5=0' (5.73)

(5.74)

figures 3-5 illustrate the distance dependence of the state populations eqs.-

(5.69)-(5.72). As cooperative shift will diverge logarithmically, elements quickly

change in the very short distance. figure 3 corresponds to the weak field case.

In this case, the damping processes are important and the population of upper-level

of the triplet state decreases. The field becomes stronger, the population of

upper-level increases. In fig. 4, all elements vary with distance. This is caused

by cooperative damping and shift (see fig. 1). However, in the very strong field

case fig. 5, the driving effects becomes important and the distance dependence

declines.

from eqs.(5.64)-(5.66), the other elements are given by

~ 4 iKR{ (bc+R2)g~ +[2 (K +Y )+g~ +g~ IR2}IB,

P: 4iKR{ (ac+R2)[2(K+y)+g~+g~I+[2(K+Y)+R2Ig~}/B,

P~ 4K{ [b-2(K+y)Jg~-a[2(K+y)+g~+g~]}/B.

(5.75) .

(5.76)

(5.77)

The phases of the dipole operator eq.(5.3l) depends on the position of the detector.

We choose these as

D+ = d (a~ + a;),
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which satisfy the following relations:

0+\ 0> = 12d\1>,

0+\1> = I2dl 0> ,

0+\ 2> = 0+\3> = 0,

0-\2> = I2"d\l>,

0-\3> = I2d\2>,

0-\0> = 0-\3> = O.

(5.79)

(5.80)

(5.80

Then from eqs.(B.31)-(B.33), the power spectrum is finally given by 52)

coh incoh
I(v]=o(v-w)I +I(vJ,

where

and

(5.82)

(5.83)

(5.84)

with
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§6. Conclusion

In this chapter, we have investigated the cooperative feature of two-level

atoms. In §l, the general formulation of coherent and incoherent parts of

spectrum is presented. from this formulation, we see that the amplitude of

coherent part is proportional to the square of the transition amplitude from the

equilibrium . state, and the incoherent part is governed by the unsteady-state time

evolution operator. In sections 3 and 4, we study the dynamics of two-level atomic

system and its emission spectrum. Section 5 is devoted to the calculation of the

steady-state density operators and the emission spectra for one and two atoms

system. In this section, we show that the results can be written in relatively

compact forms. In the two atom case, the distance dependence of state popula­

tions was discussed. The present work is the first step of this problem. More

detailed studies of power spectra are being carried out.

Although we limit here to a relatively simple problem, the method here

employed can be used for more complicated problem~ It is interesting to investi­

gate such cases that the atoms are modulated by reservoir independently or the

system consists of three or more atoms. We leave these for future study.
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Appendix A

Let us evaluate the hyper-operator (s t iL) -1. We suppose that the system

consists of the n states and the density operator is expanded as

P<t) P1!I><II + P 12><21 + ••• + p I n><nl + p 11><2\ + p 11><31
2 n n+1 n+2

+ ••• + Pn 2 -1 In>< n- 21 + Pn 21 n>< n-11 , (A. I}

where p j are time dependent coefficients. Now, we introduce an operator f and

its inverse f-; With use of these operators, the density operator in eq.(A.l) is

transformed into an n2-dimensional vector as

(A.2)

P 2
n

and

f-1p(t) = P 11><1\ + P 12><2\ + ••• = P(t).
1 . 2

These operators are expressed by the vectors

(A.3)

and

t = [ 11>< II, \2><21, ••• , In><nl, 11><21, \1><31, •••• 1 (A.4)

as

fp (t)

I 1>< 11
12><21

I n><nl
12>< 11
13>< 1f

t
t d t p ( t )} = p( t )
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and

The equation of motion (2.1) is now written as.
fp (t) = - iLfp (t) ,

where

(A.7)

(A.8")

(A.9)

is the n2 xn2 matrix corresponding to the Liouvillian and its elements are expressed

by the elements of 4) t and 4) as

iL. = (fiL f- 1 ) = tr{4)t iL4) } . (A. to)
]k jk j k

The Laplace transform of eq.(2.1) is then given by

pes] = f- 1 (5+iL)-lfP(to), (A.lt)

where S is the unit matrix multiplied by the constant s. The power spectrum

eq.(2.5) is written as

I (V) =~Re [1 im t r{ 0- C 1 (5+ ill -1 f (p e O+)} I = ]
E:+O S iV+E:

:~e[lim trtO+4)} (S+iL)-l trt4)tp.eO+} I = 1
~o S ~~'

in which the equilibrium density operator is given by

p e = 1im f- 1 s (5+ iL) -1 f (p (to) ) •
s+O
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from eq.(A.l), the state conservation relation (2.3) is written as

density operator and hyper-operator eq.(2.31) and (2.32),

n

tnp(t)} = L p.
j=l J

To evaluate the equilibrium

= const. (B. 1)

we consider the projection operator R which removes the one state proportional

to Io.><a\ (1 ~:£n). Then,

Rp(t) =p'(t),

where

(B.2)

p '( t) = p I 1>< 11 + p I 2>< 21 +.. .. .. ... p Ia -1><a -1\ + pia. + I><a + II
1 2 0.-1 0.+1

+ ........ + p I n>< nl +.. .. ... •
n (B.3)

from eq.(B,l), the removed state is expressed by

n

p la><al = (-I p. + const)\a><al,
a j;l:a J

where

const = tr{p(to)}.

(B.4)

(B.5)

The first term in the brack.et on the right hand side of eq.(B.4) is expressed as

n

-L p. = tdp'(t)}.
j;l:a J

Then we may write

p ( t ) = p' ( t) + Palo.><a\ = OaP' (t) + Ia><a! cons t ,

where

Oa = 1 - Ia><al t r{ •

(B.6)

(B.7)

(B.8)

This equation also means that the reduced density operator can be recovered by

the operator I as

Ip , ( t ) = P ( t) •

Where

IX = ChX + !a><a\const.
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By multiplying the both sides of eq.(2.7) by R, we have

p,(t) = -RiLp ( t) •

From eq.(B.7), it can be written as

p,(t ) = - RiLO p' ( t) - RiL Ia><al cons t .
. \l

(B.l1)

(B.12)

We now employ the matrix representation. Let us consider the operator ('

which removes the one element Pal a><a\ from p ( t) and transform it into vector

space. The operator f' and its inverse (' -1 are defined by the vector

t' = [ 11><11, ••• , la-l><a-ll, la+1><a+ll, • .." \1><21, 11><31, •• 0. ).

(B.13)

is the form

f'p(t)

and

ttdt' pet)} = p'(t) (B.14)

f' -lp ' (t) = t'·p I ( t) = p' (t) ,

where

(B.15)

P' (t) P,
~;

Pa-l
Pa+1.

(B.16)

is a vector with n2 -1 components and p' (t) is given in eq.(B.3). The projection

operator R is then expressed as

(B.17)

Then, from eqs.(B.14) and (B.17), eq.(B.12) can be written in the matrix form as

wheJe

P'(t) = -iL'P'(t) - Y const,

iL' = f' iLOa r' -1 ,

Y = f' iL Ia><al •
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The Laplace transform of eq.(B.18) is given by

(B.21)

By eqs.(B.5), (B. 15) and operator I, we have

(B.22)

Note that iL of eq.(A. 8) is the n2 xn2 matrix,

we have assumed that there is the one relation eq.(2.3) or eq.(B.1), the number

of independent variables of Pc t) is n2 -1. It means that the rank of iL and iL'

are n2 -1 and

but

detl iLl = 0,

de t I iL' I % 0.

(B.23)

(B.24)

Because of this, the inverse matrix (5+ ILl -1 has no element proportional to 1/5.

"Therefore, the equilibrium density operator eq.(2.15) is given by

p e = 1im $) ( s ]
8+0 (B.25)

With use of this equation, eq.(B.22) can be written as

p ( s 1 = (1..'1+ 9( s 1)P( to) ,
5

where

1 e
const ptr{

and
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In the matrix form, the equilibrium density operator eq.(B.25) is expressed by

(B.29)

where

is the n2 x (n2 -l) matrix. For the power spectrum, several manipulations reduce

eqs.(2.34)-(2.36) to the form

h ineohlev) = O(V) leo + I(v),

where

- e { +} et r{~D }.P x t r ~D •P ,

and

with

Here, we have used

(B.31)

(B.32)

(B.33)

(B.34)

o. (B.35)
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Let us consider the integral

J

t+litJt l
1= dt l dtz L (tll([ (tz)P (t»).

I I A
t t

This integral can be written more conveniently by making changes in the

variables as

{C. I)

(C.2)

since both integration are carried out over the same area in the tl -tz plane.

We further set

T I = tz -t, Tit = tl - tz = tl - t - T I ,

in term of which eq.{C.2) becomes

f
lit lit-T'dr'f dr" f(t+T'+T",t+T').
t 0

Then eq.{C.l) is written as

lit lit-T I

I = f dr I f dr" L (t +T I +T It ) {[ (t +T I ) P (t»).
o 0 I I A

(C.3)

(C.4)

(C.S)

L (t+T I +T") and L (t+T I) have nonzero correlation only for small Til.
I I

Hence the integral over -r' can be extended to infinity without change in value.

furthermore the stationarity of the random processes make it possible to make

L\t+O in the limit for T'. Therefore, by replacing Til to T, we have

I = li t r dt L ( t +T ) {f.. ( t )P (t)).Jo I I . A
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Appendix 0

The function eq.(3.40) is given by

(D.l)

By choosing r jk along the polar axis, as shown in Fig. 6, and using eq.(3.48), we

have

2 ck Jd . [ ik-r casSg (ck,r.
k

) =-2 <t>dS sInS d.-d - d.·d cosS.cosS]e jk
J IT J k J k J k

Let the angular coordinates of d be <t> ~ and S~, then we have
i 1. 1.

coss. = cosscoss~ + sinSsinS~cos(<t>-<t>~).
1. 1. 1. 1.

(0.2)

(0.3)

from d • k. Substituting this equation into eq.(B.2) and integrating over Sand
i

<P, we have

. (0.4)

where

A
J
.
k

= [(d ·d ) - (d -r )(d -r )/r 2]/d2
j k j jk k jk jk '

(0.5)

(0.£)

(0.7)

In this equation, it is assumed that d= Id.\ .
)

In the limiting case r jk-+O, Wjk

becomes unity and the natural radiation damping is then given by

K = K.. = 2d2wo 3 I (3rrc 3 ) •
))

With use of this constant, the cooperative damping Yjk is expressed as

(0.8)

j ;t k ) (0.9)
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from eq.(A.9), the Liouvillian eq.(5.30) is expressed in the matrix form as

* * (E. I}iL = K iE - iE iE -iE
A A 1 1

iEt *W 0 iE iE
A A 2 3

-i~ * *0 W - iE - iE
A A 3 2
4-

iEt °EtiE' -1 W iE
1 2 3 B B

- iEt iEt - iEt iEt *W
1 3 2 B B

where

K= r 4K 0 0

o l (E.2)-2(K+Y) 2 (K +Y) 0
-2(K~Y)

l-2 (K ~.Y>
-2 (K +y) 0

0 0 2 (K -y)

iE iR+"[ 1 0 nw
[-2 (K ~Yl

0
iR l A -1 1 {E.3}

A b -iR+ 0 -1+
iR -iR c 0 0+ +

W
[2(K~Yl

0 o ], iE = iR ·[ 0 0

~]
(E.4)B B + 0 0e iR

iR f+ . -1 0
+
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Appendix F

The matrix eq.{B.19) is now given by

iL' =
.. ..

K' iE' -iE' iE' -iE'
A A 1 1... ..

iE" W 0 iE iE
A A 2 3

- iE,t
.. ..

0 W -iE -iE
A A 3 2

iE" iEt "Et W iE-1
1 2 3 B B..

iEt -iEt iEt ..
- iE" W

1 3 2 B B

where

K'
[ 4K

0
o l-2(K+Y) 2 (K+Y)

2(K~Y)2(K-Y) -4Y

(F.l)

(F.2)

iE'
A iR+- [1 0

-1 1
o -1

iE"
1 (F.3)

and the other elements are given in Appendix E.
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Figure Captions

Fig. 1. The distance dependence of the cooperative damping and frequency shift

normarized by natural radiation damping on the interatomic spacing r for

dipole operator elements d perpendicular to r (A
I2

=1, B
I2

=1).

Fig. 2. Energy-level diagram for the triplet and singlet states. Tne effect of

field connects the three triplet states.

Fig. 3. Dependence of state-populations on interatomic spacing for two atoms.

We put A=l and 8=1 as like as Fig. 1. Here, the Rabi frequency is

small compare with the damping.

Fig. 4. Same as Fig. 3 with the Rabi frequency comparable to the damping.

Fig. 5. Same as Fig. 3 with the Rabi frequency much larger than the damping.

Fig. 6. Geometrical relations· for the computations of cooperative damping.
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