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Destruction of Quantum Coherence

Quantum coherence of radiation-matter interaction is investigated. The thesis deals with two
problems; First, a stochastic model of a multilevel atom interacting with its environment randomly
in its excited states is considered. Analytical expressions of spectra of three- and four-level atoms
in the second order optical process are obtained. It is shown that terms in the expressions can be
classified into three types corresponding to the Raman, Raman-like and luminescence processes,
respectively. The total intensity of emission spectrum is also calculated and discussed. Secondly,
the general formula of power spectrum for the coherent and the incoherent parts is derived by using
the probability conservation relation. The master equation for a cooperative two-level atomic system
which ‘interacts with the véc_uurp environment is studied by using Mollow’s approach and its emission
spectrum is calcuiated. Fof a singlé- and coupled-atomic system, the density operators of steady-
state énd the powef spectra are calcuiated ahalytically. For the coupled-atomic syétem, the depend-

ence on an arrangement of atoms is discussed.
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CHAPTER 1

Second Order Optical Process of Random Modulated- Multi-Level Atom

§1. Introduction

The Raman scattering and lurﬁinescence are both second order optical processes
and have been a subject of active study for a long time. The intergction of the
system witﬁ its e'nvironment present in the intermediate states is called an jntenr-
mediate state intenaction (IMSI). In the Rarﬁan scattering, the quantum coherence
is conserved, whereas it is interrupted in the luminescence by IMSI. Thus, a simple
three-level atom gives only the Raman scattering if the natural radiative damping
is the only mechanism acting in the excited state. The luminescence appears when

1-9) Kubo and

IMSI destructs the quantum phase coherence in the excited state.
his collaboratorslo)-ls) have extensively studied: various stochastic models, where
the perturbation from the environment (reservoir) is regarded as a stochastic
Markovian process, for the purpose of understanding the nature of IMSI in the
second orde;' optical process. Since the stochastic approach does not rely upon
perturbative calculations, it is particular_ly useful to see how the coherent and
non-coherent parts are dependent on the relevant parameters of the problem chang-
ing from one extreme to another. However, the re;ults are usually still so much
complicated that analytical expressions are not very transparent and one has to
appeal to numerical treatments in order to get physical understandiné.

The present chapter reports an analysis of three-level and four-level atoms
moduiated by the 's»imples't two-state jump .perturbation which allows straightforward
algebraic treatments. This problem was treated by Takagawara some years ago,
but his expression of the emission spectra was still complicated and he showed only
some numerical exampies. We found that the analytical expressions can be sepa-
rated into a few terms which correspond to different processes with different
character of coherence. Although we have not been able to discover the general
principle of separation, the achieved separation is by itself very. interesting and
" seems to throw a light into t’he question of coherent and incoherent parts of the

second order process.’
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Destruction of Quantum Coherence.

This chapter is organized in the following way. The next section is a brief
summary of the stochastic theory of IMSI in the second order optical process. In
section 3, we calculate the spectrum for a three-level atom with a diagonal modu-
lation and discuss its features. In section 4, the spectrum for a four-level atom
with an off-diagonal modulation is calculated and discussed for three different

models. The last section is devoted to the summary and conclusion.

§2. Formulation

A formulation of IMSI in second order optical processes in the stochastic

10)-15)

approach has been given by Kubo and his collaborators. In this section, we

present a derivation of the expression for emission spectra following the formulation

6)

recently described by Kubo in a conference report.l A formula for the total
emission intensity is also given.

We consider an atom system S interacting with a radiation field ¢ and a reser-
voir R. The system S has three groups of quantum states, namely the initial state
A, the intermediate state Bl’ 82’ " and the final state C. Concerning the
photon field ¢, the frequency of incident light is denoted by v, and that of emitted
light by v,. In the second order process, the atom in the state A absorbs a photon
vy, transfers to one of the intermediate states (if there are more than one such
states), and then transfers to the final state C emitting a photon v, We ignore
the non-resonant process in which the atom transfers to the intermediate states
before absorbing Vi. Therefore, the energies of the initial, intermediate and the
final states of the system S+¢ are represented by

a=A +Vy, bi = B, and c =C + V2, (2.1)

1

where we put h=1. The interaction of S with the incident light is denoted by Vl

and that with the emitted one by V2. For simplicity we assume that the system

S+¢ interacts with its reservoir R only in the intermediate states. The IMSI is
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denoted by the Hamiltonian Hjy. Thus, the Hamiltonian of the total system is

written as
Htot = Hs+<I> * HR * HI * V1 * vz’
. (2.2)
when S is in B's, and
Htot = Hs+<I> * HR * v1 Yy (2.3)

when S is in A or C. Here, Hg,¢ and Hy denote the Hamiltonians of S+¢ and R

without interaction, respectively.

The density matrix for the total system evolves in time following the equation

ocey = -il H ..ot | = "iH:otO(t), (2.4)

wheré we have introduced thé notation
o = (o, X1, (2.5)
for a hyper-operator o*.
We assume the initial condition for eq.(2.4) as

p(0) = |a?<a|p;, 7 | (2.6)
where p; is the equilibrium density matrix of reservoir R satisfying

H:p; = 0. (2.7)

In a stochastic approach, the dynamical evolution of the reservoir R is replaced
by a stochastic evolution. Let r denote a state of R and Pr(t) the probability for

finding R in the state r at time t. The stochastic evolution of Pr(t) is assumed

to follow the Markovian equation

P (t) = - E.I‘u,r')Pr.(c). | (2.8)

Thus, the stochastic operator ' plays the role of iH’F‘l in the foregoing treatment.
The IMSI is represented by the interaction Hamiltonian HI(r) acting on S in the
intermediate states when R is in the state r. The dynamical part of HI(r) is the
adiabatic random modulation for each of the intermediate states. In addition to

this, there may be off-diagonal (nonadiabatic) modulation between the intermediate
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states. It has been shown many years ago by Kubo that the evolution eq.(2.4) is

replaced by

beey = -i(HEe) + V;‘ + V;‘)o(u - Tp(t), (2.9)
where H(r) is given by

H(x) =HS+¢ +HI(t), (2.10)
when S is in the intermediate states, and

H(ry = H (2.11)

s+¢’

when S is in A or C. In eq.(2.9), the density m’atrix p(t) is considered as a vector
in the space of reservoir states. The component P_(t) is the density matrix of the
system S+®, R being specified in the state r. The stochastic operator ' operates
on this vector, while the hyper-operators operates on each components of the
vector. Hereafter, we denote a quantum state of S+¢ by a bras or kets such as
la), lbi> and |c)or {a|, {b; | and {c|. Similarly state vectors of the reservoir
are represented by round bras such as (rl, |r), (P] or | P). In this notation

Tir,e') = (| T 10) ‘ (2.12)
in eq.(2.8) and Pr(t) =(rIP(¢)} The equilibrium state of R is written as [0) or (0l
and satisfies

rf 0) =0 and (0|r =0 (2.13)

with the normalization

(0j0) = 1. (2.14)

Then the initial condition (2.6) is written as

p(o) = |a><al +0), (2.15)
By solving eq.(2.9) with this condition, we obtain a transition probability P(c,t)
that the system has reached the final state c at time t starting from the initial

state a. This is given by
P(c,t) = (0]<clpctrfe (2.16)

Per unit time, the rate of emission (photon counting rate) W(c,t) is given by
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Wce,t) = dP(c,t)/at. (2.17)

By introducing the Laplace transforms of P(c,t) and W(c,t) by

® _
Ptc,s) = J at e *'P(c,t) (2.18)
[}
and
(® N
Wic,s) = | at e °*"W(c,t) = sPrc,s], :
Jo (2.19)
the CW response is written as
Wic,») = limWc,t) =lim sWc,s).
oo s>0 (2.20)

The total intensity of emission integrated over all values of V2 or c¢ is calculated

as
I = Lodc Wie,»). (2.21)
Based on eqs.(2.15)-(2.17), we can calculate the CW response in the second order

optical process. We expand the formal solution of eq.(2.9) to the second order of

V2:
t v —i(t-t') (X _+VX) [ Loxyoci(Et-t") (HX +vX)
P2 (t) =J dt'J dt e SR 1 (-le)e SR 1
L] 0
_ e X X
(-ivX)e it (HSR+V1)O(O)'
2 (2.22)
where
iHX = iHl) + T. (2.23)
From eq.(2.16), the transition probability is given by
¢ t2 -i(t-t_)(HX +VX) ~i(t_~t_)(HX +VX)
Pic,t) = | at, dt1(0|<cl[ e 2 sR 1V e 2 18R 1
0 0 : - X +vX
{e ltl(HsR+V1)p(0)}V2

—i(t- X X -i -t HX +vX
i(t tz)(HSR+Vl){e 1(t2 1)( 3R 1)\/2

+ e
-i X +vX
e 1t gr 1)0(0)}V2 He>.

(2.24)
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The photon counting rate can be written as

t
-1 —t ! - -3 b 4
W(c,t) =I dt’ (0|<c|V2e te-eh)(n °+F+V1) e it (Hgp*v])

. POV, [

+ C.C.

(2.25)
Then the CW response eq.(2.20) is formally given by
' . 1 .
Wic,®) = lim (0| <c|V, - ——p“V. {e> + c.C.
>0 172 s+i(H-c)H+iV1 2' (2.26)
where
e - s
PT = lim — v P (0,
ero S*1HR VD) (2.27)

represents the equilibrium-density operator.
We further expand eq.(2.26) to the second order in Vl. First we expand p°©.
The zeroth order term does not contribute to eq.(2.26). The first and second order

terms are given by '

|

e _ 4 _iyXy —S
Py = lim e (-IV) — i P (O
s*+0 SR SR
. 1 .
= lim === P (0) iV, + see-
X ’ .
oo S*IHG ! (229
e .. | VK L iux)— S
P2 = lim S+in ( lv].) S‘*‘in ( lvl) S+in Q(O)
0 SR SR SR
oy 1 1 —1 __
- lim i U e oY, - imere oV 2a9)

where the irrelevaﬁt terms are omitted. The first order term eq.(2.28) has the
matrix elements <a]pi|bn>.while Pz has elements only between the intermediate
states. Next, we expand the first propagator in eq.(2.26) of right hand side in
V(. The zeroth order term combines with p3and the first term with pf. The

final expression is given byls)
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Wie,ey =] 1 lim [ (0]<c]V, |b ><b. |s+I‘+
ijkl s>0 Y

1
T c)lb ><b, |V, |a>
1

I 1
xs+l"+i(a—c)

*
<C‘V2|b1> <bl's+]"+yb+i(H-a)
1

+1 01 (°|<°|V2|bn><bn|S+F+Yb+i(H‘C)

|bl>[<blb |
ijkl nm

| 1
j s+I‘+Y5+i(H-a

x <b

S S 1
+<b1bmi s+l‘+2yb+iH"‘ bkbj><bklvl| a><bj| 5+F+Yb+i (H-a)

*<b |V 0
x<b |V &> <b |V [c>]0)
+ C.C.

Here, we have introduced the notation

<bibj|Al b.b,> = <b [{Alb ><b |} b.>,

s+1"+2Y +iHX

|b,>*
1

* *
|b, > <b [V, [a> |0)|(2.30.1)
|b b, >

7lb><b |V |a>]0)<alV, b ><b |V, [e> (2.30.1)

(2.30.111)

(2.31)

for a hyper-operator A operating on lbk><bl|. In eq.(2.31), it is assumed that

the natural radiation damping of the intermediate states is given by a phenomenol-

ogical damping constant Y, for the states B's. As we shall see in later sections,

eq.(2.30.1) comes from P} and gives rise to the Raman and broadened Raman parts.

Whereas eqs.(2.30.1I) and (2.30.1lI) are due to p5 and gives the luminescence part

. : . : e
and at the same time compensates the negative contributions from o7,

The total intensity of emission eq.(2.21) can also be calculated as

I

® 1 e
Lodc (O|<C|V2 s+i(H-c)+[+iva P V2|c>|0) *c.c.

1]

a1 L1 (0]<clV,Ib><b b |

LL. —“—leJ[bb>.

1
X [<b,|—-—,—)| b><b |V | @] 0)<a| V |b><b |V | o

i'Yb+i(H-a

1

* * |
+ <bklml bi><bjlvl' 3>| 0)<bi|v1|a><bm|v2lO] .
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Destruction of Quantum Coherence.

§3. Three-Level Atom with Diagonal Modulation

In this section, we consider a three-level atom with a random level modulation
of the intermediate state B. Then, the IMSI Hamiltonian (egs.(2.10) and (2.11))

is written as

HQ) = a 0 0 (3.1)
0 b 0 ‘
0 0 ¢ ‘ ’
The modulation  is further assumed to take only two values Q=tp randomly with

the average jumping rate Y =1/1 (see Fig. 1). This is called a two-state jump

modef. The modulation Q is expressed in a matrix form as
a- [ a o (3.2)
0 -A
for the space of two-state. The time evolution of the random modulation is

described by the operator

T = §y 1 -1, (3.3)
™\ -1 1

The eigenvectors of T corresponding to the equilibrium state are given by

lo) = ;‘,(1) and (ol = (1, 1). (3.4)
1

Other eigenvectors are

1) = z(l) and (1] = (1, -1). (3.5)
-1 .

These eigenvectors satisfy the following relations:

(0l]0) = (1)@l 1) =0, (oje]1) = (1}Q|0) = 4,

(ojr|0) =0 and (ajriny =vy_. (3.6)
17)

From eq.(2.30), the spectrum W is expressed as
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: 1 L 1
W= _ .
tm [(Olvb+r-1(wzm|°’s+l(m1 w0 O
(0|Yb+[‘—i(wz-ﬂ)| ”Ym+i(w1wz)“‘Ybﬂ“H(mx-ﬂ)Io)
(0= —— o)1~ (0] =———— 0) + c.c.]
Yb+l"-i(m2-52) 2Yb Yb+l'+i(w1-9) T
N — | D)o [ (1]t 10) + c.c.]
de‘-i(wz—ﬂ) 2Yb+Ym Yb+I‘+i(un-§2) T
+C.C. (3.7)
with
w, = a-b and w2 = c-b. (3.8)

Here, we have set <c |V2|b>=<blv2 lc>»=1, <a IV1 i b>=<b|V1 ta>=1.
The spectrum W can be rearranged into a sum of three terms as (see Appendix)
W= WR + WBR + WL’ (3.9)

with

i

W = 258w w)
R 12 (Yb+Y(w1))2+(wl-6(w1))2 . (3.10)

Y 1 1

=2 " 2° 2 2" 2 2
BR Y, +(w1-m2) (Yb+Ym) W, (Yb+ym) w,

A% [-u)l°uu2+(yb+ym)2+A2 ]2+(Yb+Ym)2 ‘(wlﬂuz)z}

[(Yb+Y(u)1) )2+(w1-6(w1) )2][(Yb+Y(w2) )2+(w2-6(w2) 7] (3.11)

and
W =2 [W Y(wl) Ym] Yb“Ym [ Ym Y(wz) W
L arb Y, HY (wl) Yol Y™V YoV n Yb+Y(w2) bre (3.12)
Here,
v,y )82 Cd s wA?
(W) = ———Lsre an Wy =———————
Y Y, Y )T’ 0y, +7_) %400 (3.13)

can be interpreted as shifts of the damping rate and the frequency, which are
induced by the modulation, respectively. In eq.(3.12) the factors Wa_>b and W

b+c
represent the absorption and emission rate, which are given by
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! Y +Y (W)
o = RO ) 7 T svw,)) e, 6w )2
(3.14)
and
Yb+Y(w2)
brc =~ (Yb+Y(w2))2+(w2-6(w2))2 ' (3.15)
respectively.
From eq.(2.32), the total intensity of emission is calculated as
= 2neW
oY, (3.16)

The first term eq.(3.10) represents a pure Raman process. It is composed of
a § -function at wy=w, and the intensity has the resonance form in which the
damping and the frequency are modified by the corresponding shifts eq.(3.13) with
w=w;., The second term {3.11) seems to represent the Raman-like process, whereas
the third term (3.12) the luminescence.

In the static limit of Y“TO, the third term (3.12) vanishes and the second term

becomes
. n?
WBR = 2me S (wy -w2) [sz*(u’l*ﬂ )2 1 [sz“(wl'ﬁ)z ] (3.17)

Then, we have

1 1
- - . P + .
W= WR + WBR = 2med(wy w2) I{sz"'(wl*ﬂ)z Yb2+(wl _A)z}

(3.18)

~ This is an average of spectra of two pure Raman processes through the inter-
mediate state B+A and B-A. Thus, the second term can be interpreted as a part
of Raman process in this limit.

For a finite value of Y, the luminescence appears and the Raman line of the
second term (3.11) is broadened to a Lorentzian form as the result of the first
factor of the right hand side. This broading is caused by the nonstatic IMSI,
through which the reservoir exchanges energy with the radiation. Thus, we regard

it as a Raman-like process and call it a broadened Raman term. The last three
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factors of eq.(3.11) determine the intensity. Because the Raman line is broadened,
these factqrs form peaks at frequencies where w2 conincides ‘with the energy dif-
ference between either of excited states and the final state. It seems to be
natural that these peaks are caused by the resonant enhancement of the Raman
component. In eq.(3.17), though the last factor also has the maxima at the posi-
tions of resonance, this term does not show additional peaks because of the §-func-
tion. |

In the motional narrowing limit of Ym>>l with AZ/Ym-*Y', §(w) vanishes and

Y(w) becomes Y'. Then eq.(3.11) becomes

' Y' o1 Yy,
Y@R = 2'“Q+b Yb+y"?; Yb+y' VVx>+c' (3.19)
where .
Y, +Y! Y +Y'
1 _ ' =
Wosp = (v +y ') w0 ® and Wone (4" ) P ® (3.20)

In- this limit, each term of W can be expressed as a product of transition rates

and branching factors (See Fig. 2). Thus we have

1 N . 'Y',

2-W'

= . NI T W' .
W = 2m-8(w; w2) (Yb+Y')z+wlz + b Yb(Yb+Y') b

{3.21)
The pure Raman term V‘é becomes the first term of eq.(3.21). The second term
represents the luminescence and consists of three factors.. The first and final
factors correspond to the transition rates from A to B and from B to C by absorp-
tion and emission of light, respectively. The second factor is composed of the
damping factor 1/Y_ and a branching ratio Y'/{y_+v") between the Raman and
luminescence term in the state B. It is seen that WBR becomes a pért of lumine-
scence in this limit. Thus, WBR has both features of the Raman and luminescence
processes.

For a finite value of Y, ‘the luminescence term eq‘.n(3.l2) is also composed of
three factors. From the observation in the motional né‘rrowing limit (See Fig. 2),

we expect that these factors may correspond to transition rates and branching
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ratios. On the contrary, as the quantum coherence of photon is partially main-
tained, WBR can not be expressed by three factors as eq.(3.19). Thus, the
straightforward interpretation based on the branching ratios is not applicable for
a finite value of Y_. If we integrate each term of W eq.(3.9) over w,, War Wor
and W merge into a single term as eq.(3.16), which is a product of the transition
rate from the state a to b and the damping rate in the state b.

In the fast modulation limit Y2, W, and Wy, vanishe. Then, we have

1
W = 2med(w; -wy) Y_Z_Z—_

N | (3.22)
which is equal to the spectrum in the absence of modulation.

Figures 3 and 4 show the spectral distributions of W, and W normalized by
the total intensity eq.(3.14) for a set of parameters with w1=0.15, A=0.5 and
Y,=0.0l. In Fig. 3, Wyr shows a sharp peak at the Raman position w;=w, for
Y70.01. Because of resonance, this term also shows additional peaks at frequencies
w,=tA. The Raman peak declines rather quickly as Y, increases. Already for
Y,=0.1, the Raman peak becomes almost unnoticeable. In Fig. 3, the luminescence
peaks at wp= 0.5 are distinct for small values of Y,- When Y, becomes larger,

the additional peaks of Wgp and two peaks of W  merge into a single peak and

are motionally narrowed.

§4. Four-Level Atom with Off-Diagonal Modulation

Next we consider a four-level atom with intermediate states Bl and BZ’ The
IMSI from the reservoir is assumed to give rise to an off-diagonal interaction

between B1 and B2. In this case, IMSI Hamiltonian is written as
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HQ) = a 0 0 0 ]
0 bl Q 0
(4.1)
0 Q b2 0
. 0 0 0 ¢ |

Here, the modulation Q is assumed to be the same two state jump process as in

§3.

The interaction Vl connects A and Bl’ Concerning the interaction V2 between

B's and C, we consider the following three modeis: V2 connects C with (I) BZ’ (1)

Bl’ and (IlI) both B, and B, (See Fig. 5).

1 2

4.1 Model 1

From eq.{2.32), W is given byn)

W= 1im[(0|<b| : L 1b,>[0)

1'H lb>+l"(-)bZ| + +i(a-H)
=0 2Yb+I'+|(-c) 1" s{ +i(a-c Yy ‘

z 1
+ ¥ (0]<b | |b>
Lio1

2'y. 4 +i(H-c)

ij= b
1 -1
x [« bj.bzl 2Yb*f'+in| blbj><bj!yb+F+i(a-H)1 b1>‘ 0)

N S 1 )
"o 2Yb*“iH’d ;<Y el 221 O]

(4.2)

Where we set Vl=V2=l. Here, the Hamiltonian H of intermediate state is assume

H = b, @ 'j
2 b, _ ’ (4.3)

with its quantum states

to be

< | =[1,01, <b,| = (0, 11 (4.4)

In eq.(4.2), the same notation as eqs.(3.2)-(3.5) are used for stochastic operators

and vectors.
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The calculation of eq,{4.2) is elementary but tedious. We set

wy =a-b, w=c-0b, Wo =D, -b,, 5=(b1+b2)/2.

w o= w tw /2. (4.5)

it

Then the final result is written as,

_ 4.6
W=W_ +W_, (4.6)
where
Y 1 1
W m

=2 2 2 2 Z 2 2
BR Y, +(wl-w2) (Yb+Ym) W, (Yb+ym) w,

. B Lw ww, +ly sy 1240712+ ly +y-)% (0 w0 )?)
2, - 2 2, _ 2
Ly s, 0% +lw, S 02T +yw, )2+, -Sw, 1)?]

(4.7)
and
Yw, )Y Y Y Y, )
w =2W_> +(<i)+)Y+‘“{‘ .Y(Y+§$)[Y+$Y*’Y(w)wb2‘*c’
L1 a>bl Y HY (W, ) Y Y ) YW TeY b 'm 'b 2- C o (4.8)
with
o Yb+Y(ml+)
= 2 2
a*bl T (Y YWy ) )+ (wy-S(wy ) (4.9)
and
Y, *Y(w, )
Worre = Ty Y (wy_) ) 24wy -8(wy) ) 2" (4.10)
Here, §(w) and Y(w) are defined by eq.(3.13) and Y, , is given by
2
y (2y, +v )4
= 2 2 .
12 7 (2y, +y )7 g (4.11)

The middle factor of eq.(4.8) coincides with the factor corresponding to the transi-

tion rate from Bl to 82 , which is given by

= Y].2
Yb(Yb+2Y12)

W = (0]<

| 1ob2 |b1b1>|0)> + c.c.

1

-~

In eq.(4.6), the pure Raman process cannot appear, because levels B1 and 52 '

are connected by the modulation Q and the quantum coherence of photons is dis-
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turbed by them. But the broadened Raman process which maincains the quantum
coherence not perfectly but partially still exists. In the static limicYm*O, its

coherence recovers perfectly and Wy, becomes
A? ’

[Yb2+(w1+/A‘+sz/4)2][Yb2+(w1—/A‘«no‘/4)2]' (4.13)

WBR = oS (wy wy)

The right hand side of this equation has the form corresponding to the resonance
Raman intensity which shows maxima at two eigenstates of eq.{4.3).
In the motional narrowing limit Ym>>lwith Az/Ym-*Y,' the quantum coherence in

W__ is completely disturbed by the modulation and Wy is given by

BR
. ‘ Y' l Yb )
W= W - pe— W :
BR arbl 'Yb +Y Yb Yb+Y woz-rc (4.14)
Here, W'_, , and W'bz . are expressed as
Y, ! e
b b
e — and ' -
Wbt = (r,#! )2 wl_z “{32+c’ AR ' )? «u2+2 : (4.15)
Then, W=WBR+WLl is written as
‘Y 1]
W= W "W .
a>bl Y, (Yb +2v ') %Pc (4.16)

Here, the first and last factors correspond to the absorption process from A to
B'1 and emission from 82 to C, respectively. The middle factor represents the
transition process from Bl to BZ’ because leriri‘eq.({}.B) becomes Y' in this limits.
Thus, eq.(4.16) corresponds to the luminescence process, which represents the tran-
sition A—»Bl+Bz->C, and has no such branching as in eq.(3.21).
The total intensity of emission is calculated ésk
Ol Yw, ) Yo _fY'b+Ym N P

arbl Yb+y(wl+) yb+‘{m LYb-Ym Yb(Yb+2Y12) . )

4.2 Model 11

This calculation can be done in the same way as in the subsection 4.1. The
final results is given by

W=W +W,, S - (4.18)
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where

1

= 21§ ’
WR A (W, w,) (Yb+Y(m1+) )2+(m1—'6(w1+) ) (4.19)
and
W o lw Y@, oY, ].{wam ) Yio ]
L2 a b1l Yb+y(wl+) Yb+Ym Yb-Ym YbTYbi-Qlej

(w_ )
x [ AT e S | a20
Y. Y Y HY(w_ ) blsc
. . b m b 2+
Here, Wbl-*c is defined by

Yb+Y(m2+)
2

Wise = (y A, ) )+, Sw, 1) - (4.21)
The factors (v, +f_)/(y_*Y_) and Y.,/ (Y, *2,,) appeared in the middle part of
€q.(4.20) coincide with middle part of eq.(3.12) and eq.(4.12), respectively.

In the static limit, Wy, vanishes and W is given by

2 2
Y, ©ww
W = 270 (wy 4w3) Z p) z 12) 1; T ZTAvZ
[Yb “'(wl*\/A o /4) ][Yb +(L01‘/A +Wo /4) ] (4.22)
This equation is similar to eq.(4.13).
In the motional narrowing limit, W becomes
1 1 l Y' Yl
= oS —_— owt  —Y— L _ 1
W=t BT w r e o N T e Mo
(4.23)
where
1
' _ YbP{
b = 1y2 2.
e e e, (4.24)

For the general value of Yy, the total intensity of emission is written as

1 Y(wl+) Y Y

I=2IT-W+ [+(w)+ (W )Y“’;‘Y(Y*‘]éi).
a*bl (Y ¥ (W, ) YW, ) Y Yy Y Y Y (4.25)
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4.3 Model I
The result for this model is obtained by only adding the result of model one
and two. Then, W is written by using eqs.(4.7), (4.8), (4.19) and (4.20) as
W= WR * WBR * WLl * WL2' (4.26)

The total intensity of emission is written as

b (4.27)
This intensity is composed of the factor corresponding to. the transition from A
to B and the damping factor in B levels as eq.(3.16). |

In the static limit, W=Wy +Wg is given by

1 1
- L] - !
W = 2meS(wy wz)E[ Yb2+(m1 /—_ZTALWO 4)2 +Yb2+(w1 /7‘——4'” +wo 4)2 ]- (4.28)

This equation contains two terms factors corresponding to two eigenstates.

In the motional narrowing limit, W becomes

Y T ] Y ,—-W'
VoY 2| ¥ bive

1 ' Y !
= 9. W -
W = 2med (w1 w2) (Yb+Y‘ )2 ,”17_ + 2 a’*bl{ Y, +Y [ Yy

+

1] ) .Yl W'
‘Yb(Yb+2Y') wa' b2+cf -

(4.29)
Each term of this equation is composed of the factors corresponding to transitions
A—»Bl, Bl—>82, 82 +C, and branching factors as shown in Fig. 6.

For a finite value of Y_, it seems that each term of eq.(4.26) can be inter-
preted in the same way as in the motional narrowing limit. However, as there
is the quantum coherence in Wgg, the simple branching scheme is not applicable.

If we put Wo=0, the solution eq.(4.26) agree with eq.(3.9). This is éasily under-
stood as follows: The eigenstates of H (eq.(4.3)) are given by [b't> = .([bl>t}b2>)/,/2
with eigenvalues b+A. Though V1 connects |a)with both lb+> and |b_>, V2 con-
nects |c> with only |b+>. Thus, the present model reduces to the model discussed

in §3 and eq.(4.26) reduce to eq.(3.9).

Figures 7, 8 and 9 illustrate the spectral distributions of W o W, and W,
: =3
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normalized by the total intensity eq.(4.27), respectively. We set W, =0.15, A=0.5,
and Y, =0.01 as in Figs. 3 and 4. The excited states are separated by ®=0.3. For
small values of Ym, le and WL2 show two peaks at frequencies of two eigenstates
of eq.(4.3), respectively. In Fig. 8, the left peak of WLz’ which corresponds to
the frequency of eigen state near B2, is higher than the right, because B2 and C
are connected directly by V2 in the model one. Similarly, the right peak of WLz

is higher than the left in Fig. 9. When Y becomes larger, two peaks of WLl

merge into a single peak at the frequency of w2=wo/2 and these of WL2 at

Wz =-wo/2, as they are motionally narrowed.

§5. Conclusion

We have shown that each term appeared in the éxpression of spectrum can be
classified into three types. These three types of terms seem to have. meaning as
physical processes. One of them corresponds to the pure Raman process, which
maintains the quantum coherence. Another one is regarded as the luminescence
process, where the quantum coherence is perfectly disturbed by the random modu-
lation of IMSI. This type of term éan be expressed as a product of three factors,
which seemingly correspond to the absorption, relaxation and emission processes,
respectively. The third type of term shows the broadened Raman peaks and can
be interpreted as the Raman-like process. This term becomes a part of the Raman
term in the static limit of Random modulation, but a part of the luminescence
term in the motional narrowing limit. It seems to be a reason of these mixing
features that the quéntum coherence is destroyed only partially by IMSI in this
process. The present classification of terms has been derivedby the rearrangement
of the complicated formula and is not based on the direct calculation of each
physical process. Thus, the correspondence between‘ 'thre’e ‘types of terms and

physical processes such as the Raman and luminescence processes is not very trans-
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parent so long as we are concerned with CW response. It will be clearer, if trans-

ient responses are treated along the same line. We leave it for future study.

We have also calculated the total intensity of emission and have shown that

it is expressed by the transition rate from the initial state to intermediate state.

Appendix

The terms in eq.(3.7) can be calculated by using the following formula

1

Oy e ) - W‘wi‘”*(o‘mio)(ollm1><1H T
x(llmloxmmlm +oee e
- (o| 1 10)
+r+1m-(o|1911)(117—:F;;;{1)(1|19|0)
_ 1
T YptY(w)+i(w-9(w)) (A1)
and
1 1
Ol s P - Ol O OlIn Al Tl D
= 1 . iA
T YY) +i(w=0(w)) Yy+y i (A.2)
with
(Y, +Y)8% wh?
Y(w)"(Y +Y 37’—7’ and G(m)'(Yb+Ym)‘+wz
(A.3)
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Figure Captions

A three-level atom with a diagonal modulation.
Branching features of the spectral of a three-level atom.in the

. . . , ' .
motional narrowing limit. The factors wa+band Wb_ycare defined by

' eq.(3.20).

Emission spectra of the broadened Raman term of a three-level atom
with a diagonal modulation.

Emis:sion spectra of the luminescence term of a three-level atom with
a diagonal modulation.

A four-level atom with an off-diagonal modulation. The interaction V,
connects A and B;. Three models are considered for V, as follows: V,
connects C with B, (I), B, (II) and both B, and B, (D)+{Il).

Branching features of the spectrum of a four-level atom in the motional
narrowing limit. The factors W o1 W, and W, are defined -by
eqs.(4.15) and (4.24).

Emission spectra of the broadened Raman term of a four-level atom with
an off-diagonal modulation.

Emission spectra of the luminescence term 1 of a four-level atom with
an off-diagonal modulation,

Emission spectra of the luminescence term 2 of a four-level atom with an

off-diagonal modulation.
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Destrugtion of -Quantum Coherence.

CHAPTER 1I

Emission Spectrum of Two-Level Atoms

§1. Introduction

In studying the radiation-matter interaction, one sometimes assumes a system
of two-level atoms (molecule) as the simplest model, which has attracted an

1),2)

enormous amount of interest. However, the first theoretical satisfactory

description was achieved relatively recently by Mollow.B) His paper deals with
a single two-level atom driven by a monochromatic electric field. The atom comes
into equilibrium with the field through the effect of a "natural radiation damping"
induced by the coupling between the atom and the radiation field at zero-temper-
ature. He derived a "master equation" for the reduced density operator of atomic
system and calculated its motion. In a subsequent paperr,4) Mollow investigated

the power spectrum of resonant fluorescence for the same model and found the

so-called "dynamical Stark effect".>)

The master equation for the collective two-level atomic system was first given

by Lehmbergs)-s) (see also Ref. 9). An interaction between atoms through a bath

causes "cooperative dampings"lo)- 15) n16)

and "cooperative Lamb shifts which depend

on the arrangement of atoms. As shown by Dicke,iﬂ a system of N two-level
atoms may be treated equivalently as a system with angular momentum J<N/2.
He used this feature and investigated a spontaneous emission (qo driving field)
of a collective two-level atomic system with use of the perturbation theory. The
18)-28)

main result is the prediction of the "supperradiance" effect. Concerning

this problem, a considerable amount of work on the spontaneous emission has been

done with the use of the master equation approach.zg)-‘“)

.All of these calcula-
tions are based on the assumption that atoms are distributed over a small region
(small;sample model). In this case, cooperative damping agrees with the natural
radiation damping and the master equation becomes quite simple.

The emission spectrum of collective atomic system which is driven by the

monochromatic electric field was first given by Agarwal et al.42)’43) They used

a small sample model and obtained numerical results for the cases of two and
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three atoms. In the subsequent study, Agarwal et al. calculated the same model
of two atoms analytically and showed the existence of additional sidebands of
spectrum.44) Several investigations have also been done on - this subject.45)-48)
However, most of the treatments have used the small-sample model and the master
equation which includes the cooperative effects more precisely has not been
studied.

The main purpose of this chapter is to investigate the power spectrum of
cooperative atoms which may be distributed over a region large compared with
the resonant wavelength.

This chapter is organized in the following way. In the next section, a general
formulation of the coherent and incoherent spectrum is developed. In 8§83, we
deri\}e a master equation by an approach different frbm that of Lehmberg. Section
4 gives a cooperative emission spectrum. In 8§5, practical calculations for the
models of single atom énd two atoms are given. The last section is devoted to

the conclusion and brief summary.

§2. Coherent and Incoherent Parts of Spectrum

We consider a system, which is denoted by the Hamiltonian H and its density
operator P(t). The equation of motion is written as
oty = -ilp(t), - (2.1)
where we have put h=1. The quantal Liouville operator iL is defined by
iLX = il H, X ] (2.2)
for an operator X. The density operator satisfies the "probability conservation
relation

triocty} = const, : (2.3)
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since
tr{p(er} = -itr{H pcer-pcerH = 0. _ (2.4)
As is well known, a power spectrum is expressed by the Fourier-Laplace trans-
form of the correlation function of a physical variable, for example, a dipole
moment of an atom, or a magnetic moment of a spin. We put its creation and

annihilation operator D* and D7, then

o

{ve]
. -st + -
= < o >
T(v) Re {é;r: J dt e D (tg)D (tg+s) |S= i\)+€}’ (2.5)

0
+
where D (t) are the Heisenberg operators and their time evolution is determined
by the Hamiltonian. We introduce the unitary time-evolution operator Uctj;,t1)

which is defined by the relations

d = -i
Eu(tz,tl) = -iH Utta,t1) _ (2.6)
and

Uty ,t1) = L. - (2.7)
Its solution is expressed as ‘

Utta,t1) = expl-iH(t2-t1) 1. (2.8)
The density operator for the system at time t, is then given by

P(ta) = Ultz,t1)0(t)Ulty,t2). (2.9)

This is equivalent to the formal solution of the Liouville equation (2.1)

L]

p(t2) = exp[-iL(tz-t1)lp(t1). , (2.10)

The Heisenberg operator D(t) is also expressed by

Dit2) = Uttr,t2)De1)Uct2,t1), . (2°.11)
with

Do) = D. (2.12)

The correlation function appearing in eq.(2.5) is now written as 49)

'<D+(t)D—(t')> Tr{Uco,t)D'Uct,,0)Uco,t")D Uct”,00p (00}

it

Te{D Uct”,t)p(£)D Ule, "))

Te{D expl-iL (¢” -£) 1 (o)D)} .

(2.13)
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The power spectrum eq.(2.5) is then give by

- l . - . -1 e ‘+
[(vy ——"-Re{el:;l er{D (s+iL) *(p°D )Hs= iv+€}’ (2.14)

where we have replaced the density operator to the equilibrium one, assuming
that after a long time the system has reached the equilibrium state uniquely.
The equAilibrium density operator satisfies the relation

-iLp® =0 (2.15)
and is expressed in the Laplace transform as

0% = limp(te) = lim sprs),

Lo e S*0 (2.16)

where

(o2}
-st
s} = dt e (t).
ot Jo ° ~ (2.17)

The evaluation of the ..hyper-operator il is given in Append_ix A.

Note that eq.(2.14) can be interpreted as the time evolution of the system.
The state of the system is initially in the equilibrium, then the creati‘on operator
D" makes it nonéquilibrium (excited) one. That state evolves in time followed
by the resolvent (s+iL)"'. Finally, the annihilation operator D  returns the
evolved excitation to the equilibrium.

Now, we derive a gevneral formula of power spectrum for the coherent and
incoherent scattering. We put constant in eq.(2.3) is unity. Then,

tr{p(tq)} = 1. . ' : (2.18)
We assume that this equation is only one restriction relation between the elements
of the density operator. ‘Let us consider the projection operator Q which projects
the density operator onto the equilibrium. We define Q by , ‘
Q = p%etr{ (2.19)

We also define another projection operator Q' by

Q = (1-Q) = 1 -p%tr{ ’ ‘ (2.20)
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It can be shown that Q and Q' satisfy the following relations

Q* = Q (2.21)

Q" = Q, (2.22)
and

QQ' = Q'Q =0. (2.23)
From eq.(2.13), Q and Q' also satisfy

Qiz = Q=0 2o
and

Q'iL = iLQ' = iL. (2.25)

The density operator is decomposed into two components
P(e) =p + Q'p(r). (2.26)
By uéing eqs.{2.24) and (2.26), the Laplace transform of eq.(2.1) is expressed as
prs1 = (s+if) p(eg)

= ‘épe + (s+if) *Q'p(tg)-

(2.27)
Then we can write the resolvent (s+il) ' as
(s+il) =—;—£/+9ts1, | (2.28)
where
Y = p°tr{ | (2.29)
and
gis1 = (s+ig)71Q', (2.30)
Equation (2.30) satisfies
lim s grs1 = 0. (2.31)
s+0
therefore, the operator §(s] has no element proportional to 1/s.
The formal solution of eq.(2.1) is then given by
c+im _
p(t) =p° +-i—vl—‘f as e Grsipitor, : (2.32)
c-i®™
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where ¢ is taken to the right of all singularities in integral. This solution has
separated the equilibrium part from the unsteady-state one. The operator & (s]
denotes the time evolution of the unsteady-state part of O(to)and -when the density
operator coincides with the equilibrium one, the second term becomes zero. Here-
after, we call §(s1 the "unsteady-evolution operator". .

Above discussion also allows us to separate the» power spectrum into two parts.
From eqs.(2.28)-(2.30), we may write eq.(2.14) as the form

[vy = 8wy I°°0 & TR (2.33)

where .

[coh

tr{D 0%} e er(p°D'}, | - (2.34)
and
(7" ==+ Re er{DGes1°D | __ .

' (2.35)
The first term eq.(2.34) corresponds to the coherent part of the power spectrum
and is proportional to the square of the absolute value of the induced dipole
moment. The second term eq.(2.35) is the incoherent part. Its form represents
the time evolution of the system as like as eq.(2.14), but the evolution is now
51)

governed by the "unsteady-evolution operator" §(sI. The equilibrium density

operator and hyper-operators egs.(2.29) and (2.30) are evaluated in Appendix B.
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§3. Master Equation for Two-Level Atoms

We derive a master equation describing the dynamics of two-level atoms which

are interacting with a vacuum bath and classical (c-number) electric field by

)

using Mollow's method.B) This equation has been obtained by Lehmberg7 by inte-

grating the Heisenberg equation of motion directly. Our derivation is essentially

similar to ‘Agarwal.38)

3.1 Hamiltonian

Let us consider a system A of N two-level atoms at positions Tos Ty, 0, Iy
The excited and ground states of j-th atom which are separated by energy wo
(here after we put fh=1) are denoted by ll>j and \0>j, respectively. For these
states, annihilation and creation operators are written as

8, = lo>, <1l (3.1)
and v

+

aj = |10l (3.2)
These atoms are supposed to be driven by classical (C-number) external field
resonant or quasi-resonant with the atomic frequency w,. At the position rj,

the field is given by

=€ i(kr  ~Wt) i(-kr  +t)
Ej(t) (e j + e j ]ea'//2—, (3.3)

where w, k, £ and eo are the frequency, wave number vector, field amplitude
and polarization vector, respectively. Atoms also» interact with each other through
dipole-dipole interaction. The dipole moment operafor for the j-th atom may
be expressed in terms of the dipole matrix element dj = j<1‘|ll|0>j as
+
w, =d(a ~ aj), (3.4)
in which we have assumed that with proper choice of wave function dj can be
made real.
The Hamiltonian for the system A is given by

HA(t) = HS + Hd + HE(t)’ (3.5)
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where Hs is the atomic energy

+
H =) woa
S Z °a,a,,

(3.6)
j
and Hd is the dipole-dipole interaction
+
= j .7
H, jZkvjkajak, (3#k) (3.7)

with

2

= . - 3(d.*r._ )(d *r ) }. r_ =r -

Vi --}ik[(dj R R (£ 757m) (3.8)
The interaction between electric field and atoms is expressed by the "rotating-wave
approximation" (RWA) form as

iwt * —iwt +
= - R a.),
H (e) )j:(Rje a, +Re ;) (3.9)

where we define the complex Rabi frequencies as

‘ __]_; . ikr |
Ry =7g¢d"ea)e 5. (3.10)

Now, we assume that the system A of atoms are coupled to a bath system

B. The energy of bath system is then given by

H, =] wb'b .

q 9949 , ‘ (3.11)
where annihilation and creation operators bq and b; satisfy the commutation
relations

a’ q " Taq'’ | (3.12)

For the combined system A+B, the Hamiltonian is now written as

H(e) =H0(t) +HI,

(3.13)

where Ho( t) is the unperturbed Hamiltonian with respect to the bath

H)y =H () +H,

o) a B (3.14)
and interaction H_is assumed to be have RWA form

+ * + '
= -i - b"),
Ho= ol (gqaby - 80750 (3.15)

in which 8.'s denote coupling constants.
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3.2 Derivation of Master Equation

The density matrix for the A+B system is denoted by p(t), which follows the
equation of motion

ple) = -iL (t)p(e), (3.16)

where [_H(t) is the quantal Liouville operator acting on a Hilbert space operator

X as commutator with the Hamiltonian operator:

‘ILH(t)X = -if H ey +H , X 1. (3.17)

Here, we introduce an unperturbed time evolution operator Uy (t), which is defined
by

Us(t) = -iHg(6)Uo (t), (3.18)
and

Ua(t) = 1. (3.19)

Its solution is written as

t
Uo(t) = exp+[-iJoHo(T)dT1 (3.20)

in the ordered exponential form. Then, the interaction picture operators p'(t)
and Hr.(t) are defined as

p'(t) Us (£)0(£)Uo (£, (3.21)

and

HI(t)

[t}

Uo(t)HIUE(t). (3.22)

In this picture, eq.(3.16) becomes

.. _ _‘ ]
p'(t) = nLI<t>o (), (3.23)
or equivalently
N _
] - 1 ] - 1 '
p'(t) =p'(t") 1Lc'1t1 L o' (e, (3.24)
where
[_I<t)x = [ H (t), X ].
(3.25)
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The difference
Ap'(t) =p'(t+At) - p'(t), (3.26)
can be calculated from eq.(3.24) by iterating itself

Ap'(t) = - iJ dty LI(tl)D'(t ) - dty| dta LI(tl)([,I(tz)p'(t )) + eees,
t t t (3.27)

t+At It+AtJ»t1
where At is a time smaller than the time scale characterizing the system.
Let us assume that the bath B is initially at zero temperature and atoms are in
an arbitrary mixed state. The initial density operator for the system is then given

by

= ! =p! <
P(0) p'(0) DA(O)IO>BB 0

. (3.28)

We further assume that the excitations which are induced in the bath by its inter-
action with the atoms remain so small in the characteristic time of the atom
system. Then, the bath may be approximated at any time by its initial state,

and the density operator for system of atoms and bath at time t is written as

' - 1
') - preer|o> <of. (3.29)

The reduced density operator P, for the system A is given by

1 - 1
pie) = TrB{p (e)}. (3.30)

The relation between the Schrédinger picture and the interaction picture is now

expressed as

1 - [] [
pA(t) = Uo(t)QA(t)U o(t), (3'31)

where

t
[ = -
U's (t) exp*_[ 1JOHA(T)dT]' {3.32)

From eq.(3.27), keeping terms up to the second order in [,I(t), we obtain

' - i ' - ' ' N
AOA(t) = 1TrB{J dty LIm)pA(t )} TrB{ dty| dt, [,I(tl)(LI(tz)pA(t .

t+At J't"AtJt\
¢ ¢ (3.33)

t

In the right hand side of this equation, terms involving
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Tr bq|0>BB<OI} , Trt bql0>BB<°| b;}’ (3.34)

and

+ * > <0 , ®ese
TrB{bq|0>BB<0|bql}, TrB{bqbq,]O a5 1} ,

{3.35)
(where gq#q') vanish by taking the trace over the bath states. Thus, we have
’ - "% . : -0
bolcey = Bel] 8. 8 ate! % O)Ta,p;(t)a;
A shg J9 KA [y J
{ov]
- -i(w -We)T_+ ] i(w ~We)T +
J at e " ''q aap.(t) +e g pA(t)ajak]},
° (3.36)

where we have evaluated the double integral of the second term of eq.(2.33) as

(see Appendix C)

t+dt by ' . :
Jtdtljtdtz L e L (e2)p (e)) = Atr:d‘t L (e+D (L (v)p, (0)). (337

We will now take the limit L?s» so that the summation over q should be replaced

by an integral over the continuum of modes, i.e.

7o (52 3(du)(dﬂ w?,
q J

2nc (3.38)
where w=ck and dQ denote a solid angle. We introduce
(1)2

Nw) =357, (3.39)
and

2 La[ Q *

= d .
B 0 =4 Biabia (3.40)

Then dividing eq.(2.36) by At, we get the "coarse-grained" time derivation of

DA in the form

. o) + . + : +
- - - - (tha.a }.
P, (t) ij{Kjkaij(uak (Kjk+16jk)ajakpA(t> (Kjk 1<Sjk)pA ; S
(3.41)

Here, we put

, r e .
K° =J du)LDdT Nw)g?(w,r, e H@WIT
ik jk (3.42)
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and

K +id = I dwrdT N(w)gz(myf.k)e-i(m-won .
jko 3k 0 J (3.43)

More explicitly, these parameters are then given by

g0 _ = 2
2Kjk- Kjk TN (W) 8% W, Ty ) s (3.44)
and
f Nw)gw,r, )
= - Sk
(Sjk P} T w

(3.45)

Transforming eq.(3.41) to the Schrddinger picture, we have

. [o} + + . +
= -K a'la ,p ()} -8 _[laa,p )]
CNE j% (£<jk:aJ,;>A(f;)ak jk[ 3 Pa } -4 b 3530 9,

+
7 ij[ ajak, P, () ]

. * .
—wt + .
+ iy [ R e¥ta R e ¥fa’, P, (8D I -
) 3 J p] J J ik

R +
- 12 (L)()[ aa,p_(t) ]r
3 i3 oA (3.46)
where {} denotes an anticommutator.
In the following, we consider that the system B represents the electromagnetic

field into which atoms radiate (vacuum field). The coupling constants are now

given by

= eckL?)i(d ce | )el*Ty.
8 = @ j KA ) (3.47)

Here, L?® is the volume in which the field is enclosed and will eventually be

taken to infinity, and €., is the polarization vector possessing the property

a
; ek)\.elB()\ = GaB " ka‘kB @ B = X:¥a2)s (3.48)

where X is the unit vector in the direction k.

Then, the damping factors K?k and Kjk, are calculated as (see Appendix D)

< = %Ktj?j =K, = 2d2%we?/(3mc?), (3.49)
and

(N SR S » 3 k0, (3.50)
Héré, W_  is defined by

jk

—300—



Destruction of Quantum Coherence.

sin(wr . /c) cos(wr, /c) sin(wr, /c)
ij(m) =%{A ik . Bjk{ 3k _ jk ]},

ik (wr g /c) (mrjk/c)z (wrjk/c)° J (3.51)
with . . '
A " [(dj-dk) - (dj°rjk)<dk-rjk)/rjil/d2, (3.52)
and
Bjk = [(dj~dk) - 3(dj-rjk)(dk-rjk)/rjilldz. (3.53)

In eqs.(3.49)-(3.53), It is assumed that d= \di\. The constant K is responsible for

the "natural radiation damping" and the Y;x the "cooperative damping" which are

due to the presence of other atoms.lo)—‘ls) From egs.(2.45), we may be evaluated
the "cooperative frequency shift" i§ .k.16) Using a contour integral, we obtain
3
= jzk
6jk Kij(wo), , (j=k) _ (3.54)

where

3l cos(wr.k/c) [sin(wr_k/c) cos(wr.k/c)]
Vi w = 2Y 5k (wr.. /c) - Bk (wr }c)z_ Y or ]/c)‘ :
J 3 ik J [ ik ik 71 (3.55)

The "Lamb shift" i(Sjj would diverge logarithmically were it not for the frequency

cut off. It's value is not shown here, as it can be renormalized into wy,. The

master equation (3.46) now becomes

(t)y = -iL_(v)p (&),
pA a a (3.56)
where
: + + . L+
-iL (e)X =] (2¢a,Xa] -«x{ ala,, X} - iwel aa, X1])
A 3 i3 i) i3
2 + + . +
+ jzk( ijanak ij{ aa,, X} xﬂjk[ a3, X1)
+ il [Re™®a R e " x 1. (3k) (3.57)
3 j i j A
In eq.(3.57), we put ‘
Wo + (Sjj > W and » (Sjk + Vik > ij' (3.58)
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§4. Power Spectrum of Emission Field

4.1 Correlation function

For a general field operator A, let A" denote the positive frequency parts
and A" the negative frequency part, that is
A=A +A. | (4.1)
Quantum' electrodynamics tell us that an electric field operator E(r,t), which

is the solution to the Maxwell equations, is expressed in the Heisenberg picture
38),50) ’
as

E* (r,¢) =E§(r,t) + gxyxZt(r,t), (4.2)

where E: is the homogeneous solution and Z* is the Hertz dipole operator

n
Z'(r,e) =V d a (¢-}r-r -
; 321 s teslrr e ) r r.l (4.3)
In the scattering region lrl>>|rjl, the distance |r-r | may be written as
3
r -r =T - ter ,
| 51 ; | (4.4)

where r=rt. We must take care to approximate the operator aj(t), as it has
the rapidly varying phase factor. . To separate out the unperturbed time dependence

(rapidly varying part), We write

a_(t) = a'(rye Mok,
3 j (4.5)
This separation allows us to make the approximation.
a'(g-Fe(r-r )y, o) = a'(e-r/0).
i j j (4.6)
Then we may write
a_(e-|r-r |/c) = a_(t-r/c)et@Wor T /e,
j 3 j ‘ (4.7)
The Hertz dipole operator is now given by
+ n iwgrer /c
- 0 A -
Z (r,t) _).}_:ldje 3 aj(t r/e)/r, (4.8)
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26)

and the emission field eq.(4.2) may be expressed in the scattering region as

Wo_{(d xr e - .
4"cr{< 5 yxr | a (e=r/c) (4.9)

]_ .

CET(r,ty = Eqr,e) -
3

iwot-rj/c

e

Since the field is initially in the vacuum state, the homogeneous field operator

Ei(f,t) will not contribute to the normally ordered field correlation function:

N e | ]
Gie,e') = <E(r,e)-E'(r,10)> =—1—6;2c2—r2<D+(t-r/c).D (' -T/c)>, (4.10)

where

n S
D (t) =7 d e l’j/caj(t)-

3 (4.11)

j=1
We will assume that the atomic system is stationary and the correlation function

is invariant under the transition of time, that is,

G(e,ety = <D ()D (e1)>, (4.12)

where the proportional constant is omitted.

4.2 Power spectrum of emission field

The Liouville operator of system is given by eq.(3.5 ). We may impose the
time dependence of Liouvillian on the density operator with use of the time evolu-

tion operators

U (t) = exp(-iptza a i, (4.13)
E 33 3

and

"

U (e) exP[ithaTa,]. (4.14)
E : 3 3 3

3
These operators satisfy the relations

Us(t)a.U;(t): aje'i“’t, (4.15)
J
UE(t)a;U;(t)= a;ei“’t- (4.16)

In obtaining eqs.(4.15) and (4.16) we have used the formula
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Al = A« [ L, Al + 2L, [LL AT ] + coee

2! ’ (4.17)

{(where L and A are operator) and the anticomutation relation

[ a., = H
o2 b= 0 ik (4.18)
Then by multiplying both sides of eq.(3.56) by UE(t) from the left and U;(t) from

the right, we have (ignoring suffix A)

Bty = -iLp(ey, (4.19)
where

Pt

H

Ug(t)p(t)U;(t), (4.20)

'
=
X
L}

J @raXal -«{ ata, X} * ifw-we)[ a%a, X 1)
3 i3 i3 33

+ + . +
+j§< Qijanak -ij{ aa, X} - mjk[ aa, X 1)
* 4 .
i R.a.R.a_, . (3#k)
* 132 ! JaJ JaJ X ] : ? {4.21)

With use of eqgs.(4.13) and (4.14), the correlation function eq.(2.14) can be written

as

<D (0)D (£7)>

tr{DUct” ,t)U;(t)UE(t)Q(t)U;(t)UE(t)D+U(t,t' )}

t

- , - ~ ’ +im
er{D Ut ,t)UE(t)O(t)D+UE(t)U(t,t et

tr{D exp[—iZ(t'—t)](5(t)D+)}e’+imt- (4.22)

Then the power spectrum is now calculated from eq.(2.14) by the simple replace-

ment iw-i(w.-\)) as
- Lrelii - TLEenT ]
vy = — ReLl_ir(r)l tr{D (s+iL) ' ("D )}Is=-i(m—v)+€' (4.23)
We may also calculate the emission spec‘trum of the coherent and incoherent part
from eq.(2.34) by the replacement iv>-i(w-v), as equation (4.19) satisfy the proba-

bility conservation relation eq.(2.3).
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§5. Single- and Two-Atom

5.1 Single-atom case (Mollow's model)

For an atom which is separated enough from others, the cooperative‘ effects

are not present and eq.{4.19) reduces in this case (ignoring the suffix j, k) to

Bty = -ilp(e), (5.1)

where

SEX = xaXa® -k ata, X} + ilwwo)[ a'a, X 1 + il Rlasa’), X 1. (5.2)
Here, we have assumed that the phase R can be made real.

The vectors eqs.(A.3) and (A.5) are defined by

& = [ | <1, |O<0|, |O><1|, |1><0] T, (5.3)
and
o =T | <t] ]. (5.4)
| o><o0j
| 1><o0|
o<ty ]

The operator eq.(4.20) is written as

p(t) = dP(t), (5.5)
where 7
]B(t) = [ p 1. : (5.6)
1
P,
om0t
Py
iwt
L P,© i

From egs.(A.7) and (A.8), the master equation (5.2) is expressed in the matrix form
as |

Pty = -iL Pcv). (5.7)

—305—



where
lL = K IE P (5.8)
iE© W ‘
K = x 0 , W= z 0,1, E =R -1 1 .
-X 0 0 z 1 -1 (5.9)
with
z =k + ilww), (5.10)
* . .
z =x - ilwwo)- (5.11)

Then, the matrix appearing in the Laplace transform of eq.(5.7) can be written

as
(S+il) * = 1 U U , (5.12)
Gls] GisT ESw
1 .t 1 1 1 .t 1 1 l
s iE GisT SW SWE Glsi ESw

where the fractional expressions stand for the inverse matrices. In this equation,

we define
~1 . _ 1 _ 1 s
Gls! ~ S+K+Et 1 E h S’+K+g(s)[ 1 —l] (5.13)
SW ‘ -1 1
where g(s) represents to the effect of the driving field,
(s) = R - + L
g\s) = S+Z | S+2Z : : (5.14)
The equation (5.1) satisfies the conservation relation
p1 + p2 = cons_t, (5.15)

and we can remove the one element p,. ‘Then, eqgs.(B.16), (B.20), (B.30) are given

P(t) = | p, |, Y = o , X = 1 . (5.16)
Py -_1R . -1
Py iR 0

by

[N eNe]
Xl
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The reduced matrix is now written as
iL' = < iE' T, (5.17)
2iE° W .

E'=[ R R  (5.18)

where

The similar manipulation of eq.(5.12) permits us to write down the inverse matrix

in the form

(S+iL') ' = _1 1 Rh(s) Rh{s)* ,
Glsl
2Rh(s) h3(s)[2R%+(s+2K)(s+z*)] 2R%h3(s)
2Rh{s)* 2R*h?(s) h23(s)[2R%+(s+2K) (s+z)]
(5.19)
where
Glsl = 1 ’
s + 2K + R*(h(s)+h(s)*) (5.20)
and
h(s) = i/{s+z). A (5.21)

The  elements of the steady-state density operator are then calculated from

eq.(B.29) as

Pl -] g0 1. (5.22)
{01l
[ 2K+g(0)
iwt iwt
’5§elw 2iRe /2
-iwt -iwt
L Pse u.u‘ [ 2iR e /z* ]

The dipole operator D and D' are now given by

D = da, and D =da. (5.23)
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As shown in §4, the power spectrum is calculated from eq.(B.31) with the replace-

ment jVv>-i(wW-V), The matrix eq.(B.34) is calculated as

Hesl = B8N oR2 (5426) (5+2), 0, B R(2(5+2%IR?-(5+2) (542}, 0 |
(5.24)
and we have
Hls1*P~ = p; ?h?(s)[2(s+2€)2+4R?]/Gls]. (5.25)
Then the power spectrum is finally given by
lvl = Sv-w I°°" + 1T, (5.26)
where
| eon 4sz<2 1 ,
2% (Go1)* (5.27)
157" =Tlr[Re{ pi2h2(5)2(5+<2?r’§;?+4R2 S=i(w-\))}]' (5.28)

5.2 Two-atom case

We now consider two atoms 1 and 2 with the excitation energies, w1 and we,
measured from the ground state. The distance between two atoms is r and we
express the cooperative damping eq.(3.50) and shifts eq.(6.54) as Y and Q , respec-

tively. The master equation (4.21) is given by

Sty = -ilp(e) (5.29)
where
-iLX = Z((alXaI+a2Xa;) - «{ aIal+a;az, X}
+ilwmw)laja, X1+ ilww))l aja, X1
+ 2y(alXa;+a2Xa:) -v{ a;al+azaz, X3} + iQl a;al+a;a2, X1
+ il R181+R232+R:aI+R:a;’ X 1.

(5.30)

—308—



Destruction of Quantum Coherence.
The dipole operators of system are now expressed as
+ ikr - ikra

- ) = = d "
D =dja +dyae a, D o=dpa rde 3y (5.31)

It is helpful to note the formal identity between states of two-level atomic system
. . 17
and those for a single system having an angular moment, ) We can choose

the base of atomic system as the triplet states

| 1> = |O>1|0>2, (5.32)
|2 == (| 1> 0> + 0> | 1),
(5.33)
1> =1 |, (5.34)
and the one singlet state
| &> =‘7%—*([1>1|0>2 - 10> 1)), (5.35)
The density operator eq.(4.20) is expanded as
By = $-Prr), " (5.36)
where
® -0 9, ¢, ¢, o, & I, (5.37)
with
o = | ><1], |2<2|, | <3|, |4<4| 1, (5.38)
o, = ‘[_ | ><2|, | 2><3|, |1><3] 1, (5.39)
,“Qc = [ |b<4|, [4<3], |<2| 1, (5.40)
and . T
Py =[P 1, (5.41)
i’a
P,
l~)c
K
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with
P =1p
p2
p3
L p4 J

[}

The matrix form of the Liouvillian is given in Appendix E.

and damping rates of the system is illustrated by Fig. 2.

Equation (5.29) satisfy the probability conservation relation

P, + P, + P, +P

and we can remove the one element P, from P(t).

iE' 17,
S+B

(S+iL") 7" = [

where

and

iE"t = iE"
1

*
- i E"
1

The matrix elements in egs.(5.45)

Appendicies E and F.

= const,

iE"t

iE'
A

W

Here, we consider the case

d=-d =

This assumption reduces to

R_=0,

-iE;‘

and (5.46) are also matrices

and

and
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p e_imt . (5.42)

-iwt

The energy levels

Then we have

iE'

iE2

-iE
| 3

iE

w “+ w

(5.43)
(5.44)
-iE{ (5.45)
R *
IEJ.
R *
-1E2 |
iEg . {5.46)
%*
w
B

and are given in

(5.47)

(5.48)
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The inverse matrix eq.(5.44) then becomes

(sei'y! = | (sAnTT 0 i ‘ (5.49)

0 (s+B) !

The inverse matrix (S+iA)"'is given by

(S+iA') ' = | R , (5.50)
. 1 TGrel Gisi Busaw
| S 1 1 1 t o1 1
swW EuGls] SW  SW I Glsl Tusw
where
. L ! = L 0 (5.51)
Gis1 * = S&K+grs) SW S+WA ’
1
0 TR
E =[iE, -iE* ]. SW,
Q A A
The matrix glsl is defined by
- “igt “1gt
glsl = Ea(SJN ) Ea = EA(S+WA) EA + C.C. (5.52)

which corresponds to the effect of driving force. More explicitly, g{sl is given

by
gsl = §,*8, 8 & . (553
-8, -8, & *8,*8. -8,
8,8, "8,°8, §8,*8
where
g = (s+b)(s+c)Rf/detl + C.C. (5.54)
g, = (s+a)(s+c)R+2/detl + C.C. (5.55)
g = -2(K+Y)(S+C)R:/detl + C.C. (5.56)
g, = R;/detl + C.C. (5.57)
and
detl = s® + s?{a+b+c) + s(ab+bc+ac+2R:) + c(Rf+ab). {(5.58)
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The variables a, b, c are given in Appendix E. In the complex conjugate appearing
in egs.(5.54)-(5.57), we have assumed that the parameter s is a real constant.
The connection of levels are illustrated in Fig. 2. The calculation of eq.(5.50)

can be done by the manipulation of 3x3 matrixes. Several elements are calculated

as
F13 = Gl3[s) = [[s+2(K+Y)]ge + Al /detG, {5.59)
F,, = ;;[sl = [(s+a<)g, + 2(<+y)g_ + Al/detG, (5.60)
_ =1 - 2 +
F = G, sl = [s? + s(6<+2y+2gl+g2 g3+ge)
+ &(k+y) + 44<(g1+g2+g3) + 2(c+y)g_ + Al/detG,
- o (5.61)
where )
detG = s° + 52(8<+2g1+2g2+g3+ge)
+ s[4(5¢%v%)-2(3c-v) (2g, +g, ) +4 (2 Y ) g +12cg_+A]
+ 8(*<°Y)[2K('<+Y)+K(g1+2g2+g3)+2(|<+Y)ge+A], (5.62)
" and

A=ge, +8lg+g,+g). (5.63)

By using these elements, another elements of F are written as

Fy3 = {{(s+b) (s+c)+RZIF_ + RYF,} iR /detl, (5.64)

Fgy =1 [(s+c) (s+a)+RZIF_ + [2(K+Y)(s+c)+Rf]Fa} iR _/detl, (5.65)

Fes ={[s-2(’<+Y);~b]Fa - (s+a)Fb}Rf/detl, (5.66)
wvh»ere

F =F,_ -F = ((s+4)g,-sg_l/detG, | (5.67)

F F
a 23 13

L)
]

'
)
1]

b F33 43 [§z+s(6<+2Y+2g1+g3)+&< (K"'Y)"’4’<(81+83)]/det0. (5.63)
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The state populations in the equilibrium are calculated from eq.(B.29) as

p; = {-(<+v)g2+A%} /B, (5.69)

pz = {-4!<g;-2(K+Y)gZ+A°}/B, (5.70)

p; = (4< (2 -g] -g) -g3) -2y ) g2 +A"} /B, (5.71)

e .

P, =1l-p -p,-p,, (5.72)
where we put

g =gl A = Al

i i's=0’ » s=0’ (5.73)
and

B =

8{21<(K+Y)ﬁ<(gg+2g;+gg)+2(K+Y)} (5.74)

Figures 3-5 illustrate the distance dependence of the state populations egs.-
(5.69)-(5.72). As cooperative shift will diverge logarithmically, elements quickly
change in the very short distance. Figure 3 corresponds to the weak field case.
In this case, the damping processes are important and the population of upper-level
of the triplet state decreases. The field becomes stronger, the popuiation of
upper-level increases. In Fig. 4, all elements vary with distance. This is caused
by cooperative damping and shift (see Fig. 1). However, in the veriy strong field
case Fig. 5, the driving effects becomes important and the distance dependence
declines.

From eqs.(5.64)-(5.66), the other elements are given by

P, = 4ikR( (bc+R2)g;+[2(K+Y)+g°1+gg IR?} /B, (5.75)
;3:: 4icR( (ac+R2)[2(K+Y)+g:+g§]+[2(»<+Y)+R2]g;} /B, (5.76)
b, = 4« [b-2(<+y) lg; -al2(c+y)+g] +g3 1} /B. (5.77)

The phases of the dipole operator eq.(5.31) depends on the position of the detector.

We choose these as
+

D =d(a

+ + - .
1 + a2)1 D =. d(al + az). (5.78)



BRERE

which satisfy the following relations:

D'l = /24| 1>, D’|2> = /| 1>,
D' 1> =/2d|0>, D|3 =/2d|2,
D'|2> =D'|3 =0, D|o> =D |3 = 0.

Then from egs.(B.31)-(B.33), the power spectrum is finally given by 52)

incoh
[vi = v I°°" « [[v1,

where

coh

5 = 2a%( 545,12,

and
incoh_ 2 ; v -
[TVT = .2d%Ref{ pz(F_,8+F79) + p3 (F88+F89) + ps(F18+F19—a)

+ p6(F28+F29—(1) + 57 (F48+F49)+§9'(F98+F99

with
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(5.79)
(5.80)

(5.81)

(5.82)

(5.83)

S=i(v-w)’

(5.84)
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§6. Conclusion

In this chapter, we have investigated the cooperative feature of two-level
atoms. In §1, the general formulation of coherent and incoherent parts of
spectrum is presented. From this formulation, we see that the amplitude of
coherent part is proportional to the square of the transition amplitude from the
equilibrium"state,’ and the incoherent part is governed by the unsteady-state time
evolution operator. In sections 3 and 4, we study the dynamics of two-level atomic
system and its emission spectrum. Section 5 is devoted to the calculation of the
steady-state density operators and the emission spectra for one and two atoms
system. In this section, we show that the results can be written in relatively
compact forms. In the two atom case, the distance dependence of state popula-
tions was discussed. The present work is the first step of this problem. More
detailed studies of power spectra are being carried out.

Although we limit here to a relatively simple problem, the method here
employed can be used for more complicated problem: It is interesting to investi-
gate such cases that the atoms are modulated by reservoir independently or the

system consists of three or more atoms. We leave these for future study.
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Appendix A

Let us evaluate the hyper-operator (s+if) L We suppose that the system
consists of the n states and the density operator is expanded as
cotey =p | <]+ p [ D<2f weee wp fw<n] +p [1<2] +p | 1><3|

ree e e<ndl +p ol <nnil, (A1)

where p'j are time dependent coefficients. Now, we introduce an operator f and
its inverse f . With use of these operators, the density operator in eg.(A.1) is

transformed into an n®-dimensional vector as

fot) =Pey = [ p. | : . (A.2)

© VO
WoN

T * ¢ o
»

and

f'Pe) = p | P<I| +p [2<2] + o =p(1). (A.3)

These operators are expressed by the vectors

o = [ |><1], |2><2|, *=+, |m><n|, |1><2], |1><3], «=s ] (A.4)

and

o = [ lp<al] (A.5)
| 2><2]

|n><n|
| ><1)
| P<1i

L d

as

fo(e) = tr{éfo(t)} = Pty (A.6)
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and

f'P(t) =®P(e) =p(e). (A7)
The equation of motion (2.1) is now written as

fo(t) = -iLfo(t), (A8)
where

iL = fiLf! : (A-9)
is the n*xn® matrix corresponding to the Liouvillian and its elements -are expressed

t and ¢ as

by the elements of ¢
L= (FLEY) = er{d (A.10)
ik (FiL € )jk tr{(bj lLQk} .
The Laplace transform of eq.(2.1) is then given by
Pprs] = £ 1 (S+iL) tfo(tq), (A.11)

where S is the unit matrix multiplied by the constant s. The power spectrum

eq.(2.5) is written as

[(v)y =

. - =1 . -1 e+
Re[lxm tr{ D f ! (S+iL) ' f(p°D )Hs= i\)+€]

€>0

Al

;13...

¢ . - ¢ ‘{- 2 1
e[l im tr{D®} (S+iL) ltri® ' p D+}ls= i\)+€l’ {A.12)
£+0

5

in which the equilibrium density operator is given by

p® = lim f 's(S+iL) 'flp(to)). (A.13)
S0
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Appendix B

From eq.(A.1), the state conservation relation (2.3) is written as

. o
= = t.
telp ()} jzlpj cons (B.1)

To evaluate the equilibrium density operator and hyper-operator eq.(2.31) and (2.32),
we consider the projection operator R which removes the one state proportional
to la><§| (1s05n). Then,

Rp(e) =p'(t), (B.2)
where .

plee)y = p | P<I] «p|2<2 +eer 4 p fa-D<a-1] + B op o+ ><asl|

4+ ®cee pn'n)(nl + ecee

(B.3)
From eq.(B,1), the removed state is expressed by
n
pa|a><a| = (;Zq,pj + const) je><al, (B.4)
where
const = tr{ip(tol}. (B.5)

The first term in the bracket on the right hand side of eq.(B.4) is expressed as

n
-1 p, = trip' o)},
3

(B.6)
Then we may write
P(e) =p'(e) + pylo><a] = Q') + |o><afconst, &7
where
Q - ! - lo><a| trl . (B.8)

This equation also means that the reduced density operator can be recovered by
the operator I as |

Ip'(e) = p(ey, (B.9)
Where

IX = QX + |a><a|const. ' . (B.10)
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By multiplying the both sides of eq.(2.7) by R, we have

éwt) = -RiLp(v). (B.11)

From eq.(B.7), it can be written as

p'(t) = - RiLOup'(t) - RiL|a><alconst. (B.12)
We now employ the matrix representation. Let us consider the operator f'
which removes the one element paltl><(!‘ from p(t) and transform it into vector
space. The operator f' and its inverse f'-1 are defined by the vector
o' = [ [1><1], +--, Ja-1><a-1], |arl><as+l], ==, |1><2], |1><3], eoee ],

(B.13)

is the form

f'pe) = tr{Q'fp(t)}

=P'(t) (B.14)
and
f'7P'(t) = ®'"P'(t) =p'(v), (B.15)
where .
Py =[p ]. ) (B.16)
Py
Py
Pasy

is a vector with n?-1 components and p'(t) is given in eq.(B.3). The projection

operator R is then expressed as

R=f"1f", . _ . : , (B.17)
Then, from egs.(B.14) and (B.17), eq.(B.12) can be written in the matrix form as

P'(t) = -iL'P'(t) - Y const, (B.18)
where

iL' = £LQET, ' (B.19)

Y = f'iL]o><al. (B.20)



BRI ERE
The Laplace transform of eq.(B.18) is given by

P'ts] = (S+iL') 'P'(to) -—é—(Sa-iL)-lY const.

(B.21)
By eqs.(B.5), (B.15) and operator I, we have
( \
- 171 sy vy e 1 L")y .
prsl = If l(S-HL ) TE' - —{S+iL') tr{}o(to) (B.22)
Note that iL of eq.(A. 8) is the n®xn? matrix, , iL' is (n%-1)x(n*-1). As

we haw}e assumed that there is the one relation eq.(2.3) or eq.(B.1), the number
of independent variables of P(t) is n2-1. It means that the rank of iL and iL'
are n*-1 and

det|iL| =0, (B.23)
but

det|iL'| = 0. (B.24)
Because of this, the inverse matrix (S+iL)™* has no element proportional to 1/s.

Therefore, the equilibrium density operator eq.(2.15) is given by

e - _
Pp- = lim ©rs1 = -1f ' (iL')7'Y const. :
§>0 (B.25)

With use of this equation, eq.(B.22) can be written as

pls] = (_;_y+ Gis1)p(tq),

(B.26)
where
Y = e trd (B.27)
and
Gis] = If"l[(snl.')"f'(l - p%er{ )] (B.28)
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In the matrix form, the equilibrium density operator eq.(B.25) is expressed by
P° = X(iL')7'Y + tr(d |o><a|}, (B.29)
where
X = fQf' " , : (B.30)
is the n®x(n®-1) matrix. For the power spectrum, several manipulations reduce

egs.{2.34)-(2.36) to the form

[ov) = 8wy I + 1570 (B.31)
where

ICOh = tr{@D‘}-PeXtr{@D+} 'Pe‘, (B.32)
and

Ii{{?‘f%—ﬂ‘-Re[tr{Hcs]-Pe}lS: o (B.33)
with .

W . 1yv"1 ‘ ’-1_ + 1e +

His) = tr{D @'} (S+iL") ' (tr{®''#D'} - P'"tr{@D'}). (B.34)

Here, we have used
tr{D®X = (D@}, tr{D oY} = 0. ' (B.35)
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Appendix C
Let us consider the integral
t+At  ty
[ =J dtlJ de, [_I(tl)(LI(tz)pA(t) ). (C.1)

t t
This integral can be written more conveniently by making changes in the
variables as
t+At ety t+At t+At
J dtxj de, Feey ,tp) =I dtzJ' de, F(ey,t2), (C.2)
t t t t2
since both integration are carried out over the same area in the ti-t; plane.
We further set
T =t2 .t’ L =t1 -tz =t1 -t -“[|’ (C.B)
in term of which eq.(C.2) becomes
At Ae-1¢ '
f dl"f dt" Fles+tr 417, t47). (C.4)
t ]
Then eq.(C.1) is written as
At Ae-T*
I =J dt'f dt” L (e+tr+T) (L _(e+Tip (). (C.5)
o o I I A
L (t+t'+1") and L _(£+T') have nonzero correlation only for small t".
Hence the integral over 7' can be extended to infinity without change in value.
Furthermore the stationarity of the random processes make it possible to make

At>0in the limit for 1'. Therefore, by replacing " to 1, we have

=4t f:dt [_I(t+T)(LI(t)DA(t)). (C.6)
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Appendix D

The function eq.(3.40) is given by

"

2 *
g (ck,r ) [dQ § 8 ABrxh

k f
o

ike*r .
aQ ; [dj-ek)‘][dk-ekxle jk. (D.1)

By choosing rjk along the polar axié, as shown in Fig. §, and using eq.(3.48), we

have
g%(ck,r, ) =<K [4pde sind[d -d_ - d -d cosd cosd JelX FyxcoP
ik 2w I TR DR SRS Rt 3 (D.2)
Let the angular coordinates of di be ¢’i and e'i, then we have

_ ' : iont !
COSBi = COSGCOSGi + SlnSSIl’leiCOS(¢ d)i). (D.3)

from d «k. Substituting this equation into eq.(B.2) and integrating over 6 and
1

$, we have

4wd 2

2 -
g (m,rjk) = myvjkcm - (D.4)
where
3 sin(wr.k/c) [cos(wrjk/c) sin(wrjk/c)v
) " . S - ,
ij“”) T 2] 3k (wr, /c) +Bjk{ (wr, /c)* (M-k/c)j
ik Ik ’ (D.5)
= . - . . 2 2
A [(dj d ) (dj rjk)(dk rjk)/rjk]/d , (D.6)
- [ ] - * L ] 2 2
By = [(dj d) -3dder, o rjk)/rjk]/d . (D.7)

In this equation, it is assumed that d= |dj\ . In the limiting case r_k->0, Wik
3

becomes unity and the natural radiation damping is then given by

2 3
K =ij = 2d%we?/(3nc?)y. (D.8)

With use of this constant, the cooperative dampinngkis expressed as

Yk =Kjk = ijk(““' (3 %%) (D.9)
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Appendix E

From eq.(A.9), the Liouvillian eq.(5.30) is expressed in the matrix form as

.- T ) * . * ]
iLL = K iE -iE iE -iE .
A A 1 1 ’
e w 0 iE iE.
A A L 2 3
. : * A L *
-IE: 0 W -iE  -iE
Leh . . F .
lEl 1E2 -1E3 WB 1EB
_iEt et gt =t *
i 1El 1E3 1E2 IEB W)3 ]
where
K= 4K 0 0 0 ,
=2 (K+Y) 2(K¥Y) 0 0
0 -2(k+Y) 0 -2(k-v)
-2(K ~Y) 0 27
iE = iR-[ 1 0 07
W = a 0 iR 1|, A + -1 1 0 ’
A syt
-2(c#) b -IR 0 -1 0
1R¥ -1R+ c | 0 0 0]
W = d 0 0 , iEB=iR+-— 0 O 1]
B 20cy) e iR 0 0 0
0 iR ] -1 0 0
. +
and
iEl =il -R_ 0 0 ’iEz =i -w_ R |, iE, =i 0 0
00 0 w_ 00 w0 3 0 0
0 -R 0 R R 0 0 0
R_ R- ‘Q)_ E - - : et
with ‘ .
a=3<+y-,i(w+4(2), b =k +y-i(w+-§2), c=2<-2im+,
d=X -y - il,Q), e=x-y+ilwR), - f=% -2,
and -
R,=R +R, R =R -R, o =0 +u, w =0 -o,.
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Appendix F

The matrix eq.(B.19) is now given by

-]k iE'  -iE'"  iE' -iE' ]
a A 1 1 ’ (F.1)
-+ *
iE' w 0 iE iE
A A 2 3
. * . ¥
-iE! 0 w -iE -iE
A A 3 2
iE"  iE -iEl W iE
1 2 3 B
SE GES -iE iE W
L 1 3 2 B B |
where :
Kv = 4K O 0 ) (F.Z)
-2(K+Y) 2(K+Y) 0
2(K-Y) -4y  2(K-Y)
E' = iR+ 1 0 0 |, iE' =i -2Rn -R R
A 110 ' R, R -R’ (F.3)
0 -1 0 w_ o W w

and the other elements are given in Appendix E.
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Figure Captions

The distance dependence of the cooperative damping and frequency shift
normarized by natural radiation damping on the interatomic spacing r for

dipole operator elements d perpendicular to r (A12=1, Blz=1).

Energy-level diagram for the triplet and singler states. The effect of

field connects the three triplet states.

Dependence of state-populations on interatomic spacing for two atoms.
We put A=l and B=l as like as Fig. 1. Here, the Rabi freciuency is
small compare with the damping.

Same as Fig. 3 with the Rabi frequency comparable to the damping.

Same as Fig. 3 with the Rabi frequency much larger than the damping.

Geomertrical relations for the computations of cooperative damping.

—329—



DAMPING AND SHIFT

PROBABILITY

L
[/
P
A
ik
g By =1
=1
Qi
=
o
Yy
0
=
]
0 w 2T X
) DISTANCE wr,/c
FIG. 3
\\ A
]
Ps iT“r’T‘lk
)
g. R,/K:O‘Z
W sy,
[=
Iy
=
)
N
=
P
2
/P1 /P4
)\—/\
(0] n 2w 3T

DISTRANCE wr/c

—330—

{1
g‘fgzj Y9, o)
WUxen
(2>
G‘?_'z ‘ ge 2“14)
954 19, y 2o
Ax-7)
13
FIG. 4
e}
b—
o
>
b—
3
o O
o v
m
Q
o
o

Q25

DISTANCE wr/c



PROBABILITY

Destruction of Quantum Coherence.

FIG. 5
R+/'K:5
‘§
Py
\PZ \a \_P4
[o} 114 2" i
UISTRNCE W.r/c
FIG. 6
£
k
d}
>Y
X

—331—



