ペロフスカイト型 Mn₃MC (M=Ga, Zn, Sn) 金属間化合物の圧力・磁場誘起転移 金属間化合物の基礎磁性 料研費研究会報告

金子 武次郎 鹿又 武 白川 究 三浦 成人 中川 康昭 木戸 義勇

物性研究 物性研究 物性研究

京都大学
ペロフスカイト型 \(\text{Mn}_3 \text{MC} (M = \text{Ga}, \text{Zn}, \text{Sn}) \) 金属間化合物の圧力、磁場変化の影響

1. 序

\(\text{Mn}_3 \text{MC} (M = \text{Ga}, \text{Zn}, \text{Sn}) \) は、ペロフスカイト型金属間化合物を含む金属間化合物である。試料原子Mnは、単体品の形態をとっている。試料原子が、結晶学的には、一定な位置をとっているためか、結晶化合物およびその混合化合物は、きわめて多様な磁性を示すため、これまでに多くの研究が報告されている。図2に、\(\text{Mn}_3 \text{Ga}, \text{Mn}_3 \text{ZnC}, \text{Mn}_3 \text{SnC} \)の磁化の温度変化を示す。\(\text{Mn}_3 \text{GaC} \)は、自発磁化の状態から温度上昇とともに、温度上昇に伴い強化が増加し、モーリー点上では増加。温度上昇時、高圧に依存した強化が増加し、モーリー点上では、図3に示すような磁性異常をもつ。

\(\text{Mn}_3 \text{ZnC} \)の磁化は、低圧でも磁化を誘起させるが、圧力下で増加し、圧力上昇に依存した強化が増加し、モーリー点上では、図4に示すように磁性異常をもつ。

\(\text{Mn}_3 \text{SnC} \)の磁化は、圧力下で磁化を誘起させるが、圧力上昇に依存した強化が増加し、モーリー点上では、図1に示すように磁性異常をもつ。磁化強度は、圧力下で増加し、モーリー点上では、図2に示すように磁性異常をもつ。磁化異常は、圧力下で増加し、モーリー点上では、図3に示すように磁性異常をもつ。
2. 実験結果と考察

図5は、Mn₃GaCの磁気換算吸への圧力効果を示している。圧力200kbar以上の高圧場での磁気換算は、150kbarの圧力場において観察された。

図6は、Mn₃GaCの磁気換算吸への圧力効果を示している。圧力600kbar以上の高圧場での磁気換算は、150kbarの圧力場において観察された。

図7は、Mn₃GaCのHcの温度変化を示している。圧力200kbar以上の高圧場での磁気換算は、150kbarの圧力場において観察された。

図8は、Mn₃GaCのHcの温度変化を示している。圧力200kbar以上の高圧場での磁気換算は、150kbarの圧力場において観察された。

図9は、MoriyaとUsamiによる磁気換算の磁気換算図を示している。圧力200kbar以上の高圧場での磁気換算は、150kbarの圧力場において観察された。

図9は、MoriyaとUsamiによる磁気換算の磁気換算図を示している。圧力200kbar以上の高圧場での磁気換算は、150kbarの圧力場において観察された。