<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>一次元準結晶のエネルギースペクトルのエイサイクリスタルの構造と物性 料金研究会報告</td>
</tr>
<tr>
<td>作者</td>
<td>藤田 光孝 町田 一成</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 (1987), 48(2): A41-A43</td>
</tr>
<tr>
<td>発行日</td>
<td>1987-05-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/92503</td>
</tr>
<tr>
<td>タイプ</td>
<td>部門別学術論文</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>出版者</td>
</tr>
</tbody>
</table>

Kyoto University
一次元準結晶のエネルギースペクトル

京大理 藤田充克、町田一成

「準結晶」の一次元版の代表例として知られるFibonacci格子上において電子状態は周期的な周期とみなしのあるアモルファスの中間的な準周期構造を持つことを反映して、Bloch状態ではなく局在している臨界状態 (critical state) をもととされる。実際にもゲルマニウムを基本に、GaAs-AlAs、Mo-V2×2準結晶が既に作成されており、電子状態の臨界状態が期待される。Fibonacci格子は二維格子の周辺を含む原子間関係Fibonacci配列に並べられたものである。その配列は二進の要素でAとBとすると、置き換え数A → AB、B → Aで繰り返し行うことによって作られる。その操作をAから始める時、n世代目のサイト数をSnするとその数はSn =Sn−1+Sn−2 (fo =f1) で与えられる実質Fibonacci数となる。またこのFibonacci配列のn番目の世代の数列をSkとすると、Sn = Sn−1:Sn−2 に即ちSkはSn−1後にSnをつけることによって作ることが出来るとも言える。従って簡単にSkという配列をFibonacci配列のみに見れば、Sk = Sk−1 :Sk によりSk+1を導入するだけで新しいスペクトルを追加することが出来る。この方法は準結晶の二次元版の代表例であるPenrose格子のConwayの定理に対応するもので、準結晶の自己相似的な構造を反映したものであり、準結晶構造においては全てが極めて長さであることを示している。

我々はこのFibonacci格子上の電子状態をtight bindingモデル: InI₃Cu₁₃+EuCu₁₃+L₃Cu₃にいて、サイトポテンシャルをVₐ(right)とVₐ(left)の2つの値でFibonacci配列に並び変え（逆数）したFibonacci on-site model (FOM) と、変換関係は1つについてと定数2つの値でFibonacci配列に並べることをしたFibonacci Transfer Model (FTM)を、主にそのスペクトルの性質について数値的に調べた。計算は上の置き換え則に従って出来るFibonacci配列について各世代及び周期間隔条件の下で数値的に直接計算し、各世代依存性を調べた。

図1 FTMにおけるスペクトルの世代依存性

(τ=0.6)
内に入るずバードの内に話、同時に少なぎゃでも新たなに決定する。またスペクトルの集団についておの数をえきるべきFibonacci数であり、これが図2に示されている様に、

\[fn \rightarrow fn+3 + fn+2 + fn-3 \]で示されているスペクトルが示されている。図3にFOMであることに大いレベル間隔がGNでGN = N = 16 (L+1) と訳すのがN = 1.4, 1.8について

示した。これらは特に小さいレベル間隔を除いてギャップを大きく順に並べたものとして考えることからする。従って明らかに、スペクトルが逆並べ（Inverse Power Law）

即ちG(n)はM(power)で表されることがわかる。これらはFibonacci配列の時だけではなく、他の置き換える則によって作られる一次元薄膜モデルについても同様に見られる。レベル間隔が逆並べ則については二面による直観的な説明がある。

図3の発展以前からこれらと密接な関係を持つ不整で無限の電子状態について多くの研究がされてきた。一次元不整ポテンシャル中の電子状態の研究としては、特にHarperモデルである。

\[C_{n+1} + C_{n-1} + \lambda \cos(2\pi n+\phi) C_n = \epsilon C_n \] である。

\(\phi \) は Self-dual 点を越えて互いに非対称的で起こることを示すと、Aubry よりの解析を行った。レベル間隔が指数的に増大し、無限に続く群を示すと、基準の状態が不整状態を示し、スペクトルは特異曲線を示すと

と言われている。我々はこのモデルについて0 = fn+fnとして文脈で示した。これで解析的に計算を行った。基準の状態に対して、レベル間隔が指数的に増大し、スペクトルは特異曲線を示すと

言われている。図4に示したのが基本的な、Block状態、臨界状態、局在状態、対応するλ=1,2,3の場合についてのレベル間隔G(n)があり、λ=1のときは、即ち全てBlock状態もどの状態はGNは大きく2つの部分に分かれる。大きさレベル間隔については一変換

表に並べていることがわかり、ギャップ部分は逆並べ則を示している。G(n)をO(\(n^3 \)) については図
中に相関を示し、この様に Cosine関数を近似する。
またはほとんどのレベルの変動は、ここで考えられる
ことを反映して、O(10^{-6})であり、とんどゼロに近
いレベルを示す、超定常状態の下での結果は類似している。
λ=3の場合は、同様の関数の関数の逆数が周期を除いて図の相関を示した様に指数関数曲線に
なり、成長レベル分布は Poisson分布であることがわかる。O(10^{-6})に ابوくのは小の
サイズであるが、この傾向に傾向がある。状態
が臨界状態を示し、Self-dual点で2では図4(b)
からわかる様に、レベル間隔は Fibonacciモデルに
同等、逆数に従う。この時、指数は2で
あり、他の無理数に射影するので同じ値
を得ることは少し普通の値であると考え
られる。この Harperモデルにおいて、逆数
の則を示す存在が、圧図からも通信数の曲線に
見えたスペクトル分布が見ることが出来る。
上の二つのモデルは外から求めたポテンシャル
についての一体問題であった。他にも Shin
と電子の問題を考えた Fibonacciモデル,
SSHモデルについても、その類似性を大きく
すると局在・非局在数が生じることを示している
が、またこれに対してスペクトルは自己相
似的で美しい様相を示す。これらのモデルにお
いても臨界状態の存在が期待される。これについては現在計算中である。
 Higger, Bristol, 1979) 133.