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81 Introduction

It has recently been recognized that many temporally irregular phenomena consist of nothing
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more than the intrinsic chaos inherent in the rules of their evolutionary processes. The question
theh arises as to whether it is possible to understand spatially irregular structures in terms of
the intrinsic chaos inher_ent in the rule which determines their spatial arrangements? In equilib-
rium systems, the spatial chaos derived from the rule of spatial arrangement is unlikely to be a
true ground state and is more probably a thermodynamically metastable state.! The possibility of
the existence of spatial disorder has been predicted in a nonlinear optical system, which is a
typical example of macroscopic nonequilibrium physical systems.? However, the dynamical stability
- of such spatial disorders, which is the essential problem, is not clearly understood. In §2,
we present a simple dynamical system consisting of distributed nonlinear optical media and
show that spatial disorder exists quite stably over a wide range of the control parameter.

On the other hand, collective behavior, which arises through the interaction of elemental
components, is expected to be qualitatively different from the sum of the individual parts. In &3,
an interesting collective behavior in the proposed system featuring domino dynamics, cooperative
swi tching, assignment of bifurcate spatial patterns as well as multivibrator operations, is also

shown to be realiable in light of practical application.

§2 Frozen spatial disorder

The conceptual model is shown in Fig. 1. In the model, nonlinear elements possessing third-
order susceptibility are arranged in a looped optical ring cavity. These elements interact via
counterpropagating light beams that are introduced through the mirrors which separate the elements.

Within the limit of large dissipation (B<<]) and A?B~Q(l),. the dynamics are governed by3
Thu = -bu + Fr(@u-0) + [a(drer)s Bror=bu fra(@) = Ar,s?12Bcos(d+ do)ik-1,2, = N (D)

where ¢« is the phase shift introduced into the field when the field passes across the k-th
element, @o is the linear phase shift, and B =ﬁ is the coupling coefficient between adjacent
cells. The nonlinear grating effect as well as the medium loss are neglected and T/(L/c) > 1
(T :reponse time, L:cell length, c:velocity of light) is assumed.

First let us consider the case of unidirectional interaction, i.e. Ar=A and Ag=0. In
this case, the stationary solution, @i of Eq.(l) is determined by the mapping rule @+, = f¢
(Eu), with $N+l = 3.. The bifurcation diagram for ¢o = 0 is depicted in Fig.2. These solutions

are easily found to be “chaotic” if 2A%B is made sufficiently large. The most important point in
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our problem is the dynamical stability of a;k. From a linear stability analysis, the spatial

structure is shown to be dynamical stable if ¢y is the stable solution of the map, that is o =

(I/N)g In|fs’ ()< 0 in the Iimit of N =00, where o is the “spatial” Lyapunov exponent.
In g:r:rai, when q is a divisor of N, period g-cyclespatial patterns can be stabilized. In the case
of N = 2" (n:integer), in particular, a spatial period-doubling bifurcation takes place and period-
doubled structures are frozen stably. Stable solutions for N = 2" =p (pVintegertl,2) can be
classified into two classes. One implies a period 1-cycle solution and 1x2" solutions period-doubled
from the period-1 solution (S(1)). The other consists of period-N and -p cycle solutions originating
from tangential bifurcation and px2"-cycle solﬁtions period-doubled from the period p-cycle solu-
tion S(p)). The result for N = 2!'X3 is shown in Fig.3. Period-doubled solution is frozen stably (See
(b).3 Is the S(p) structure realized as A increases up to the stable domain of S(p)? This is not the
case and dynamical instability, which leads to spatiotemporai chaos (SIC) when N >> 1, develops instead
This is due to the fact that S(p) solutions, including the unstable regions, form closed loops
(isolas) and these are isolated frém S(1). In addition, their stable regions localize at the edges
of the isolas (See Fig.3(a)). As p increases, stable regions of S(p) decrease and the basin of
attraction of S(p) decreases exponentially, becoming narrower than that of SIC. As a result, SIC's
which connect to S(1) are realized and the S(p) structures are not frozen (Fig.3(b)).

Next let us conéider the case of bidirectional interaction. In this case, the dynamics are
dramatically changed. Even if r = As®/Af®, which represents the symwetry of the system (< 1) is
is equal to unity, Eq.(1) lacks the potential condition of DPw/ddu-1 = DPx-1/d®x and thus
there is no Lyapunov functional which corresponds to a Hamiltonian (or free enery) in equilibrium
systems. This fact does not ensure an approach to static structures. Indeed, in the high intensity
regime, SIC is developed. However, in the low intensity regime, period N-cycle spatial solutions
are found to be frozen over a wide region! ¢\ are plotted, except for transients, as P = A% 4
Ag® is increased (decreased) very slowly in the case of r = 1 (Fig.4(b)). & varies stepwise with
P, being accompanied by hysteresis, and on the lower intensity side of each step, ¢y is bi(multi)-
furcated into N différent static values. Moreover, the global structure does not depend on the system
size. It is difficult to judge rigorously whether such a structure is really the “ground state” or not
~however, it does not collapse even under the presence of noise. An example of disordered structures an
the corresponding “spatial” return map are shown in Fig.5. Fig.5(a) features an almost period 2-cycle
structure with “holes”. in it. Such holes result from homoclinic orbits originating from a period 2 fix

point as is seen in Fig.4(b). The stabilization mechanism of such structures is currently under study.
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§3 Collective behavior

In this section, we examine the cooperative behavior in the case of unidirectional interaction.

fAssume that N>>1 and the system is set on the upper state ¢. of “S”-shaped bistable region, where
Ax2k=1,2, = = =N) = 11, B = 0.1 and linear phase shift of ¢o = (. Here, we apply an excitation
pulse of Ap? only to one cell k=1. Then, ¢, tends to relax to a new state @,'= f(dw) = A/’ *g(dw)
(A:’ %= A;%+Ap®) roughly within a T period. When ¢,’ is realized, then the states of following cells
are successively determined like “domino thoery” based on the mapping rule of @i’ = Ax?8(Px-1"),
k =23 » =N. The dynamics differ depending upon Ap%, and can be classified as follows:
(1) all ¢y remain in the upper branch, (2) all ¢y switch.down to the lower branch, (3) all ¢«
exhibit up-down pulsation at every round trip (astable multivibration), where (1) is realized in
regions A, D, (2) is realized in region B, and (3) takes place in region C in Fig.6(a). On the other
hand, when all cells are initially set on the lower state ¢, dynamics can also be classified
into the following three categories: (1) all ¢ remain in the lower branch in regions A and B,
(2 all ¢y exhibit astable multivibration in region C, and (3) all ¢y switch up to the upper
branch in region D. In order to confirm the above dynamics, numerical simulations are carried out
using Eq. (1), where N = 6, Ax? = 11, B = 0.1 and ¢o = 0 are assumed. Results for the former case are
depicted in Fig.6(b). These results clearly reproduce the analytical predictions. It should be noted
that ¢« relaxes to stable fixed points and period 6-cycle spatial structures are realized stably
in region A, B and D. This indicates that the input information on the k = 1 cell is converted into.
different spatial patterns. In fact, N-length 2" binary inputs determined by the arrangement of{Ap(k)}
(k=1,2, = =N) are found to be converted into the same number of spatial patterns for N = prime number.
Next let us consider the assignment of the system to bifurcated structﬁres in the hysteretic
regime. This is realized by “modulating” the map. In short, one applies an excitation pulse Ap?
such that the ¢, tends to relax to one of { @} of the period g-cycle solution and then cuts off
the pulse at the time when such a solution has been established. Hereupon, states of the following
cells successively relax to the desired g-cycle solutions. The result of this assignment to the period
4-cycle solution, shown in Fig.7, indicates that the input can be stored as spatial patterns.
Finally, let us consider bistable multivibrator operation which provides key functions for
various types of logic. Such operations can be achieved by applying optical pulses (trigger) with
finite pulsewidth to a single cell. It is easy to find thaf Ap? of trigger pulse should be set

within regions B or C to realize an off-switch and in regions C or D to realize an on switch. In order
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to achieve multivibrator operation, however, the pulsewidth must be chosen in the proper regions. The
timing for cutting off the trigger pulse is determined such that the greater portion of ¢« has already

crossed over the saddle at the trailing edge of the trigger pulses. Such a “majority” condition can be

understood in terms of the “domino” mechanism. Numerical results are depicted in Fig.8 for N = 6. The
present scheme provides various flip-flop functions, such as T(Toggle), SR(Set-Reset) and D(Delay).®
A variety of spatial structures discussed in bidirectional interaction might serve as the basis for
novel optical memory device which stores complicated iﬁput information as spatial patterns. Indeed,
bistable multivibration operations featuring N-cycle spatial patterns are proved to be realizable

when N is not so large.

84 Conclusion

The stabilization of spatial disorder has beén predicted for the first time in a macroscopic
nonequilibrium system (nonlinear optical system). The study of the relationship between spatio-
temporal chaos and the large number of coexisting frozen random patterns may provide an important
clue for understanding turbulence phenomena.

Novel cooperative behavior based upon “domino”-like dynamics has also been theoretically demon-
strated on all optical basis. We expect that the proposed device will be of considerable interest in

the field of optical computing.

One of the authors (K.0) is very grateful to Dr. T. Kimura for his encouragement.
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Fig.d @x(k=1,2, = *N) versus P. B=0.3, ¢o =0, N=23.

—331—



HESEWE
(@ r = 0 (unidirectional) (b) r = 1 (bidirectional) The insert in (b) depicts
the enlargement around P = 10. In this case, symmetric period N solutions are realized

and bifurcation into 12 different states is seen. Period N-cycle nonsymmetrical solutions

can also be realized by asymmetrical excitation, i. e. r 0, 1
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Fig.D An example of frozen disordered patterns which is self-induced by increasing P to 6,
where N = 200 and r = 1. (a) Self-induced spatial disorder (b) Spatial return map.
Fig.6 Relaxation dynamics when one cell (k = 1) is excited. N=6, B= 0.1 and ¢o = 0.
A: A.% = 0.5, B: 1.4, C: 3.0, D: 4.2
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Fig.7 Assinment to period 4-cycle solution. N = 4, A% = 11.7, A »- = 5.8
Fig.8 Cooperative bistable multivibrator operation. N = §, A2 =11, 8,2=3
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