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§1 Introduction

It has recently been recognized that many temporally irregular phenomena consist of nothing
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more than the intrinsic chaos inherent in the rules of their evolutionary processes. The question

then arises as to whether it is possible to understand spatially irregular structures in terms of

the intrinsic chaos inher:ent in the rule which determines their spatial arrangements? In equi lib

rium systems, the spatial chaos derived from the rule of spatial arrangement is unlikely to be a

true ground state and is more probably a thermodynamically metastable state. 1 The possibili ty of

the existence of spatial disorder has been predicted in a nonlinear optical system, which is a

typical example of macroscopic nonequilibrium physical systems. 2 However, the dynamical stabili ty

of such spatial disorders, which is the essential problem, is not clearly understood. In §2,

we present a simple dynamical system consisting of distributed nonlinear optical media and

show that spatial disorder exists quite stably over a wide range of the control parameter.

On the other hand, collective behavior, which arises through the interaction of elemental

components, is expected to be quali tatively different from the sum of the individual Parts. In §3,

an interesting collective behavior in the Proposed system featuring domino dynamics, cooperative

switching, assignment of bifurcate spatial patterns as well as multivibrator operations, is also

shown to be realiable in light of practical application.

§2 Frozen spatial disorder

The conceptual model is shown in Fig. 1. In the model, nonlinear elements possessing third

order susceptibili ty are arranged in a looped optical ring cavi ty. These elements interact via

counterpropagating light beams that are introduced through the mirrors which seParate the elements.

Within the limit of large dissipation (B«1) and A2B~(1),. the dynamics are governed by3

where 4)K is the phase shift introduced into the field when the field passes across the k-th

element, 4)0 is the linear phase shift, and B=~ is the coupling coefficient between adjacent

cells. The nonlinear gr~ting effect as well as the medium loss are neglected and "C/(L/c) » 1

("C :reponse time, L:cell length, c:veloci ty of light) is assumed.

First let us consider the case of unidirectional interaction, i.e. Af~A and As=O. In

this case, the stationary solution, 4)k.of Eq.(1) is determined by the mapping -rule 4)k+1 = ff

(4)k) , with 4)N+1 = 4)1. The bifurcation diagram for 4)0 = 0 is depicted in Fig.2. These solutions

are easily found to be "chaotic" if 2A2B is made sufficiently large. The most important point in
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our problem is the dynamical stability of cPk. From a linear stabi Ii ty analysis, the spatial

structure is shown to be dynamical stable if cPk is the stable solution of the map, that is oc :::
N _

<l!N)1: Inlh'(cPk)l< 0 in the limit of N -+00, where ex is the "spatial" Lyapunov exponent.
\'\=1

In general, when q is a divisor of N, period q-cyclespatial patterns can be stabilized. In the case

of N=2" (n:integerL in particular, a spatial period-doubling bifurcation takes place and period

doubled structures are frozen stably. Stable solutions for N= 2" • p (p\finteger~L 2) can be

classified into two classes. One implies a period I-cycle solution and 1x2" solutions period-doubled

from the period-l solution (S(1». The other consists of period-N and -p cycle solutions originating

from tangential bifurcation and px2n -cycle solutions period-doubled from the period p-cycle solu-

tion S(p». The result for N ~ 21X3 is shown in Fig.3. Period-doubled solution is frozen stably (See

(b). S Is the S(p) structure realized as A increases up to the stable domain of S(P)? This is not the

case and dynamical instability, which leads to spatiotemporal chaos (STC) when N» L develops instead

This is due to the fact that S(P) solutions, including the unstable regions, form closed loops

(isolas) and these are isolated from S(l). In addition, their stable regions localize at the edges

of the isolas (See Fig.3(a» • As p increases, stable regions of S(p) decrease and the basin of

attraction of S(p) decreases exponentially, becoming narrower than that of s'rC. As a resul t, STC's

which connect to S(1) are realized and the S(p) structures are not frozen (Fig.3(b».

Next let us consider the case of bidirectional interaction. In this case, the dynamics are

dramatically changed. Even if r = AB
2/AF

2
, which represents the synrnetry of the system ( ~ D is

is equal to unity, Eq. (D lacks the potential condition of OePk/()cPk-t = 04h-tlOrbk and thus

there is no Lyapunov functional which corresponds to a Hamil tonian (or free enery) in equilibrium

systems. This fact does not ensure an approach to static structures. Indeed, in the' high intensi ty

regime, STC is develoPed. However, in the low intensity regime, period N-cycle spatial solutions

are found to be frozen over a wide region! cPk are plotted, except for transients, as P ::: AF
Z +

AB
2 is increased (decreased) very slowly in the case of r ::: 1 (Fig.4(b». cPk varies stepWise with

p, being accompanied by hysteresis, and on the lower intensity side of each step, cPk is bi(multi)

furcated into Ndifferent static values. Moreover, the global structure does not depend on the system

size. It is difficult to judge rigorously whether such a structure is really the "ground state" or not

. however, it does not collapse even under the presence of noise. An example of disordered structures an

the corresponding "spatial" return map are shown in Fig.5. Fig.S(a) features an almost period 2-cycle

structure with "holes" in it. Such holes result from homocli~ic orbits originating from a period 2 fix

point as is seen in Fig. 4(b) • The stabilization mechanism of such structures is currently under study.
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§3 Collective behavior

In this section, we examine the cooperative behavior in the case of unidirectional interaction.

Assume that N»l and the system is set on the upper state cPu of "S"-shaped bistable region, where

Ak2(k=1,2, • • ·N) = 11, B = 0.1 and linear phase shift of cPo = O. Here, we apply an excitation

pulse of Ap
z only to one cell k=l. Then,cPI tends to relax to a new state cPI'= f<cPJ :: AI'Zg(cPJ

(AI' 2= AI2tAp 2) roughly within a "z; period. When cP l' is realized, then the states of following cells

are successively determined like -domino thoery" based on the mapping rule of cPk' = Ak
2g(cPk_I'),

k = 2,3 • • N. The dynamics differ depending upon Ap
z, and can be classified as follows:

(D all cPk remain in the upper branch, (2) all cPk switch.down to the lower branch, (3) all cPk

exhibit up-down pulsation at every round trip (astable multi vibration), where (1) is realized in

regions A, D, (2) is realized in region B, and (3) takes place in region C in Fig.6(a). On the other

hand, when all cells are initially set on the lower state cPl' dynamics can also be classified

into the following three categories: (1) all cPk remain in the lower branch in regions A and B,

(2) all cPk exhibit astable multivibration in region C, and (3) all cPk swi tch up to the upper

branch in region D. In order to confirm the above dynamics, numerical simulations are carried out

using Eq.(l), where N = 6. Ak
Z = 11, B = 0.1 and cPo = 0 are assumed. Results for the former case are

depicted in Fig.6(b). These resul ts clearly reproduce the analytical predictions. It should be noted

that cPk relaxes to stable fixed points and period 6-cycle spatial structures are realized stably

in region A, B and D. This indicates that the input information on the k = 1 cell is converted into

different spatial patterns. In fact, N-Iength 2N binary inputs determined by the arrangement of {A p oc)1
(k=1,2, •• N) are found to be converted into the same number of spatial patterns for N = prime number.

Next let us consider the assignment of the system to bifurcated structures in the hysteretic

regime. This is realized by "modulating" the map. In short, one applies an excitation pulse Ap
z

such that the cP I tends to relax to one of f cPk} of the period q-cycle solution and then cuts off

the pulse at the time when such a solution has been established. Hereupon, states of the following

cells successively relax to the desired q-cycle solutions. The result of this assignment to the period

4-cycle solution, shown in Fig.7, indicates that the input can be stored as spatial patterns.

Finally, let us consider bistable multivibrator operation which provides key functions for

various types of logic. Such operations can be achieved by applying optical pulses (trigger) with

finite pulsewidth to a single cell. It is easy to find that Ap
z of trigger pulse should be set.

within regions B or C to realize an off-switch and in regions C or D to realize an on switch. In order
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to achieve multivibrator operation, however, the pulsewidth must be chosen in the proper regions. The

timing for cutting off the trigger pulse is determined such that the greater portion of 4>k has already

crossed over the saddle at the trailing edge of the trigger pulses. Such a Mmajori ty" condi tion can be

understood in terms of the "domino" mechanism. Numerical results are depicted in Fig.8 for N= 6. The

present scheme provides various flip-flop functions, such as T(Toggle) , SR(Set-Reset) and D(Delay).6

Avariety of spatial structures discussed in bidirectional interaction might serve as the basis for

novel optical memory device which stores complicated input information as spatial patterns. Indeed,

bistable mul tivibration operations featuring N-cycle spatial patterns are proved to be realizable

when N is not so large.

§4 Conclusion

The stabilization of spatial disorder has been predicted for the first time in a macroscopic

nonequilibrium system (nonlinear optical system). The study of the relationship between spatio-

temporal chaos and the large number of coexisting frozen random patterns may provide an important

clue for understanding turbulence phenomena.

Novel cooperative behavior based upon Mdomino"-like dynamics has also been theoretically demon

strated on all optical basis. We expect that the proposed device will be of considerable interest in

the field of optical computing.

One of the authors (K.O) is very grateful to Dr. T. Kimura for his encouragement.
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Fig.! Conceptual model of an

optical bistable system wi th

distributed nonlinear media.
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Fig.3 (a) Spatial bifurcation diagram B = 0.1. <1>0 = O. and N= 21X3.

Solid curves and dotted curves respectively correspond to stable and unstable

solutions.

(b) <l>k(k=1.2. • • N) versus AZ for N= 21X3

Fig.4 <l>k (k=1,2, • • N) versus P. B = 0.3. tPo = O. N= 23.

-331-



(a) r = 0 (unidirectional) (b) r = 1 (bidirectional) The insert in (b) depicts

the enlargement around P = 10. In this case, symmetric period Nsolutions are realized

and bifurcation into 12 different states is seen. Period N-cycle nonsymmetrical solutions

can also be realized by asynmetrical exci tation, i. e. r \' 0, 1
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Fig.5 An example of frozen disordered patterns which is self-induced by increasing P to 6,

where N= 200 and r = 1. (a) Self-induced spatial disorder (b) Spatial return map.

Fig.6 Relaxation dynamics when one cell (k = 1) is exci ted. N= 6, B= 0.1 and ¢ 0 = O.

A: Ap
z = 0.5, B: 1.4, C: 3.0, D: 4.2
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Fig.7 Assinment to period 4-cycle solution. N= 4. Ak
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Fig.8 Cooperative bistable multivibrator operation. N= 6. Ak
Z = 11, A
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z = 3
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