<table>
<thead>
<tr>
<th>Title</th>
<th>Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamada, Yasuhiro; Aoki, Hitomi; Kunisada, Takahiro; Hara, Akira</td>
</tr>
<tr>
<td>Citation</td>
<td>Cell stem cell (2010), 6(1): 10-15</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-01-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/92974</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 Elsevier B.V. All rights reserved.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
Yamada, et al.

Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance

Highlights
Rest is not required for mouse ESC maintenance.
Rest promotes the early differentiation of mouse ESCs.
Rest connects to the Oct3/4-Sox2-Nanog core regulatory circuitry in ESCs.

50-word summary
The functional significance of Rest in the maintenance of ESC pluripotency remains controversial. We herein showed that Rest is not necessary for the maintenance of mouse ESCs, and instead suggested that the Rest transcriptional repressor connects to the Oct3/4-Sox2-Nanog core regulatory circuitry during early ESC differentiation.
Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance

Yasuhiro Yamada¹, ², ³, ⁵, ⁶, Hitomi Aoki⁴, ⁵, Takahiro Kunisada⁴ and Akira Hara¹

¹Department of Tumor Pathology and ⁴Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.

²Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.

³PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan.

⁵These authors are equally contributed to this work.

⁶Correspondence should be addressed at: y-yamada@cira.kyoto-u.ac.jp

Running Title;

Rest promotes the early differentiation of mouse ESCs
The pluripotency of ESCs is maintained by coordinated expression of a core regulatory circuit of genes that includes Oct3/4, Sox2 and Nanog. Rest (also called Nrsf) is abundantly expressed in ESCs and is a target of the Oct3/4-Sox2-Nanog regulatory network. However, the functional significance of Rest in the maintenance of pluripotency remains controversial. We have generated Rest conditional knock-out and Rest-inducible ES cell lines. Conditional ablation of Rest showed that it is not required for maintenance of pluripotency, but it is involved in the suppression of self-renewal genes during early differentiation of ESCs. In addition, forced expression of REST in ESCs results in rapid differentiation. These results indicate that Rest is not necessary for the maintenance of mouse ESCs, and instead suggest that the Rest transcriptional repressor connects to the Oct3/4-Sox2-Nanog core regulatory circuitry during early ESC differentiation.

The transcriptional repressor Rest is a zinc finger protein that binds to a conserved 23 bp motif known as RE1 (repressor element 1, also called NRSE) in a number of genes encoding the fundamental neuronal traits (Chong et al., 1995;
Rest is expressed throughout early development where it represses the expression of neural genes, such as Syp and Syt4 (Schoenherr et al., 1996). Rest is also expressed in ESCs and it has also been shown to be one of target genes of the regulatory circuitry of the pluripotent state in ESCs (Johnson et al., 2008; Sun et al., 2005). However, the functional significance of Rest in the maintenance of pluripotency in ESCs still remains controversial (Buckley et al., 2009; Jorgensen et al., 2009a; Singh et al., 2008). A previous study using a heterozygous Rest ES cell line combined with an siRNA knock-down indicated that Rest maintains pluripotency through the induction of self-renewal genes, such as Oct3/4, Nanog and Sox2 (Singh et al., 2008). In contrast, Jorgensen et al. generated a Rest null ES cell line and reported that such Rest null ESCs revealed no substantial change in either the Oct3/4 protein levels or alkaline phosphatase activity in comparison to matched wild-type controls (Jorgensen et al., 2009a; Jorgensen et al., 2009b).

In order to elucidate the role of Rest in the maintenance of pluripotency, we first generated an ES cell line and mice which contained the conditional knockout alleles of Rest. The first Rest allele in the ESCs (V6.5) was replaced with the KO
vector carrying the floxed last exon of Rest, which encodes the coRest binding site that is essential for the generation of the silencing complex (Andres et al., 1999; Grimes et al., 2000), followed by ires-Gfp to monitor the transcription of the modified allele ($\text{Rest} \ 3\text{lox}^+/+$, **Figure 1A**). The transient expression of Cre recombinase generated a Rest floxed ES cell line which lacks a drug selection cassette ($\text{Rest} \ 2\text{lox}^+/+$). Analyzing the GFP expression allowed us to confirm that Rest is expressed in ESCs (**Figure 1B**).

Rest $-/-$ ESCs were next generated using the floxed Rest ES cell line together with a plasmid expressing Cre recombinase (**Figure 1A**). After the excision of the floxed Rest gene by the transient transfection of Cre ($\text{Rest} \ +/- \ (1\text{lox})$), the second Rest allele was also replaced with the floxed allele ($\text{Rest} \ 3\text{lox}^/-$). The transient transfection of Cre into Rest $3\text{lox}^/-$ ESCs resulted in the establishment of Rest $-/-$ ESCs that were isogenic to the parental ESCs without any genetic modification except for the Rest alleles.

After the recombination of the Rest alleles, the lack of a Rest transcript in such Rest $-/-$ ESCs was confirmed by a Northern blot analysis (**Figures 1B, S1A**). Consistent with the recombination, a FACS analysis revealed a lack of any GFP signal
in the Rest -/- ESCs (Figure 1B). In addition, a Western blot analysis revealed the lack of any Rest protein in such Rest -/- ESCs (Figure 1B). Syt4 possesses RE1 and it is expressed while relying solely on dissociation of the Rest repressor complex from the RE1 site for maximal expression (Ballas et al., 2005). The expression of Syt4 significantly increased in the Rest -/- ESCs, thus indicating that the Rest-targeted gene is derepressed in Rest -/- ESCs (Figure S1B).

Consistent with the findings by Jorgensen et al. (Jorgensen et al., 2009a; Jorgensen et al., 2009b), the growth and morphology of the Rest -/- ESCs were indistinguishable from those of wild type V6.5 ESCs under the self-renewal conditions (under the presence of LIF and MEF). Furthermore, when the expression of the pluripotent genes was compared, the expression of Nanog, Oct3/4 and Sox2 in Rest -/- ESCs were not altered in comparison to those in the control ESCs (Figure 1C). To further examine the pluripotency of Rest -/- ESCs, Rest -/- ESCs were next injected into the subcutaneous tissue of nude mice. Rest -/- ESCs could generate teratomas with evidence of differentiation into three different germ layers (Figure 1D). To fully evaluate the differentiation ability of the Rest -/- ESCs, GFP labeled Rest -/- ESCs were
injected into blastocysts followed by transplantation into the uteri of pseudo-pregnant
mice to generate chimeric embryos (Yamada et al., 2004). Eventually, this generated
E12.5 chimeric mice with the widespread contribution of GFP-positive cells into the
three germ layers (Figures 1D, S1C).

In order to rule out the possibility that the adaptive responses, which occurred
as a result of multiple cell passages, reduced the requirement of Rest-mediated
maintenance of ESCs, the initial response of the gene expression was examined after the
conditional ablation of the Rest genes. For this purpose, an ES cell line was derived
from transgenic embryo that harbors a doxycycline-inducible Cre transgene together
with Rest-floxed alleles (Figure 1E, Rest 2lox/2lox; Rosa26::rtTA; Colla1::tetO-Cre ES
cells) (Beard et al., 2006; Hochedlinger et al., 2005). This new ES cell line enabled
the conditional deletion of the floxed Rest genes in the presence of doxycycline. After
3 days of doxycycline exposure, the recombination in both alleles of the Rest was
confirmed in from 70-80% of these ESCs by FACS (Figure 1F). However, the
conditional deletion did not suppress the formation of AP-positive colonies regardless
of the presence or absence of feeder cells in comparison to the parental ESCs without
doxycycline (Figure 1G). In addition, the expression levels of Oct3/4 and Nanog did not change, whereas the expression level of Syt4 was derepressed while demonstrating evidence of Rest recombination shortly after doxycycline treatment (Figure S1D).

These results therefore clearly rule out both the possibility of the adaptation in the long-term culture as well as the notion that feeder cells reduce the requirement of Rest-mediated ESC maintenance. Taken together, our results indicate that Rest is not required for the maintenance of ESC pluripotency in these experimental conditions.

Both Gata4 and Gata6 were significantly downregulated in the Rest -/- ESCs under confluent culture conditions (Figure 2A), although the findings were not prominent before the cells reached confluence. Gata4 and Gata6 are transcriptional factors that promote primitive endoderm differentiation (Fujikura et al., 2002; Niwa, 2007). These findings suggest that the genetic deletion of Rest prevents ESCs from differentiating toward the primitive endoderm. The notion of the suppression of primitive endoderm differentiation is confirmed by the decreased expression of both Sox7 and Dab2, markers for the primitive endoderm (Shimoda et al., 2007; Yang et al., 2002), in Rest -/- ESCs (Figure 2A). Consistent with this notion, embryoid bodies
(EBs) generated from Rest -/- ESCs revealed a decreased number of Gata4-expressing cells in the periphery of EBs on the histological sections in comparison to the control EBs (13.1±15.0/EB and 30.4±9.02/EB in RestKO8 EBs and V6.5 EBs, respectively; p<0.006 by Student’s-t test) (Figure S2A). Rescue experiments were performed using a plasmid containing human REST cDNA (Grimes et al., 2000) to further investigate the direct association of the genetic deletion of Rest and the altered expression of Gata4 and Gata6 in confluent Rest -/- ESCs. Importantly, the decreased expression of both Gata4 and Gata6 in confluent Rest -/- ESCs were derepressed by the exogenous expression of REST (Figure 2B).

The expression of Nanog, Oct3/4 and Sox2 were significantly higher in the Rest -/- EB cells than in the control EB cells (Figure 2C). Accordingly, these observations suggest that the delayed repression of self-renewal genes during the early differentiation of ESCs may thus cause the suppression of the early differentiation of Rest -/- ESCs. To further examine the initial response of gene expression upon the early differentiation of Rest -/- ESCs, the differentiation (-LIF, -MEF) of Cre-inducible Rest-floxed ESCs was induced with/without doxycycline exposure (Figure 2D). At 3
days after doxycycline treatment, the expression of Nanog, but not of Oct3/4 was observed to be significantly higher in the doxycycline-treated ESCs than that of the non-treated ESCs (Figure 2D). In contrast, a decreased expression of Gata4 was not detectable at 3 days after doxycycline treatment when the Syt4 expression had already been derepressed (Figure 2D). These results suggest that a decreased expression of Gata4 in Rest−/- cells is preceded by an increased expression of Nanog, and that Gata4 repression is therefore a secondary effect of Rest ablation.

Finally, a doxycycline inducible REST ES cell line was generated (Figures 2E, S2B). The forced expression of REST led to the rapid morphological changes of ES-cell colonies into an epithelium-like shape, which was accompanied by decreased ALP activity (Figure 2F). In line with such morphological changes, ESCs with exogenous REST expressed significantly lower levels of self-renewal genes. The expression of Gata6 was higher, whereas the expression of an epiblast marker, Fgf5, was significantly lower in such ESCs (Figure 2G). Furthermore, an increased number of Gata4-expressing cells in the periphery of EBs was observed in the exogenous REST–induced EBs (79.2±19.6/EB and 50.7±17.6/EB in REST-induced EBs and control
EBs, respectively, p<0.004 by Student’s-t test) (Figure 2H), thus suggesting that the forced REST expression promotes the ESC differentiation into the primitive endoderm. Importantly, the REST-induced ESC differentiation was, at least in part, rescued by the Nanog overexpression (Figures 2I, S2D).

Although the critical role of the Oct3/4-Sox2-Nanog core transcription circuitry in the maintenance of ESC pluripotency is widely accepted (Boyer et al., 2005; Boyer et al., 2006; Chambers et al., 2003; Loh et al., 2006; Mitsui et al., 2003; Niwa et al., 2000), the mechanisms leading to the breakdown of such core circuitry upon the early ESC differentiation are still not well understood (Kunath et al., 2007). The present study demonstrated that Rest ablation causes delayed repression of the pluripotent genes, while overexpression of REST immediately results in the suppression of the pluripotent gene expression. It is noteworthy that the delayed repression of the pluripotent genes by the conditional ablation of Rest was predominantly observed in Nanog. Given the fact that Rest is a transcriptional repressor and Nanog harbors RE1 in its promoter (Johnson et al., 2008), the current results therefore suggest that Rest is involved in the silencing of Nanog expression during the early differentiation of ESCs.
This notion is also supported by the observation that ectopic REST in Rest -/- ESCs predominantly repressed the Nanog expression relative to the expression in original Rest -/- ESCs (Figure S2C). These findings suggest that the Rest is an external factor connecting to the Oct3/4-Sox2-Nanog regulatory network core circuitry to influence the initial differentiation of ESCs. It is interesting to note that Rest is abundantly expressed in ESCs and it is a target of the Oct3/4-Sox2-Nanog regulatory network core circuitry (Johnson et al., 2008). It is possible that the negative feedback loop through Rest may play a role in the stable transcriptional circuitry and in the rapid response upon the early differentiation of ESCs.

The current findings also suggest that Rest promotes the early ESC differentiation. Epiblast and the primitive endoderm are two distinct cell types in the inner cell mass (ICM) of the blastocyst. Genetic evidence indicates that the Nanog and Gata family transcription factors play a role in the segregation of epiblast and primitive endoderm within ICM (Chambers et al., 2003; Koutsourakis et al., 1999; Mitsui et al., 2003; Soudais et al., 1995). Indeed, Nanog and Gata6 are expressed in the ICM in a mutually exclusive manner (Chazaud et al., 2006), thus indicating the reciprocal control
of the gene expression. The current study found that the conditional ablation of Rest results in the delayed repression of Nanog during the early differentiation of ESCs, whereas REST overexpression causes an increased expression of Gata6, which is accompanied by the rapid differentiation. In addition, the expression of Fgf5, an epiblast marker, was significantly downregulated by the REST overexpression. These results suggest that Rest may be involved in the segregation of epiblast and primitive endoderm through modifying the Nanog expression.

In summary, the conditional ablation of the Rest gene revealed that Rest is not absolutely required for the maintenance of ESC pluripotency. These results also indicate that Rest plays a role in the suppression of the pluripotent gene expression upon the early differentiation of ESCs.

Acknowledgements

We would like to thank Hitoshi Niwa for helpful discussions, comments on the manuscript and a plasmid expressing EGFP-ires-Zeocin. We would also like to
thank HongQiang Sheng, Takeru Oyama and Huilan Zhi for generating the Rest floxed
ES cells. We thank Caroline Beard for a Col1a-tetOP-cre allele, Konrad Hochedlinger
for a targeting plasmid containing ires-GFP, Kazutoshi Takahashi and Shinya
Yamanaka for a Nanog-expressing plasmid, and Gail Mandel for a REST-expressing
plasmid and a protocol for Rest Western blot. We also thank Kyoko Takahashi, Ayako
Suga and Yoshitaka Kinjyo for their valuable technical assistance. This study was
supported by grants from PRESTO, grants from the Ministry of Health, Labour and
Welfare of Japan, and grants from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.
References

Chazaud, C., Yamanaka, Y., Pawson, T., and Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the

Figure legends

Figure 1. *Rest* is not required for the maintenance of ESC pluripotency.

(A) A schematic drawing of the *Rest*-conditional knockout vector and targeted *Rest* allele.

(B) A Northern blot analysis reveals a lack of *Rest* transcripts. GFP fluorescence is observed to have disappeared in the *Rest* -/- ESCs. A Western blot analysis shows the absence of any Rest protein in two independent knockout ES cell lines, RestKO8 and RestKO48.

(C) Transcript levels of pluripotent genes in *Rest* -/- ESCs. No significant changes in the expression of *Oct3/4, Nanog* and *Sox2* are detectable in the *Rest* -/- ESCs relative to the control ESCs. Transcript levels were normalized to *β-actin* levels. The data are presented as the average values with SD of six independent samples.

(D) *Rest* -/- teratomas differentiate into three different germ layers, including neural cells, ciliated columnar cells and muscle cells. E12.5 chimeric mice were generated by injecting *Rest* -/- ESCs into blastocysts.

(E) A schematic drawing of the conditional *Rest* knockout ES cell line containing doxycycline inducible *Cre* alleles.
An experimental protocol. Conditional Rest knockout ESCs were treated with doxycycline (2 μg/ml) for 24 hrs starting at 24 h and then were harvested at 96 h after the passage. A FACS analysis revealed the presence of GFP-negative cells, thus indicating the occurrence of Rest ablation at 96h after passage.

The conditional deletion of the Rest gene does not suppress the development of alkaline phosphatase (AP)-positive ESC colonies under the presence or absence of feeder cells. Rest-floxed Cre-inducible ESCs were exposed to doxycycline and then were fixed after 3 days of exposure. The total number of colonies and the percent positivity for AP are indicated. The data are presented as the mean±SD of three independent 35mm-wells.

Figure 2. Rest promotes primitive endoderm differentiation in ESCs.

Under confluent culture conditions, the expression of Gata4 and Gata6 were significantly lower in the Rest -/- ESCs in comparison to the control isogenic ESCs (V6.5). The expression of Sox7 and Dab2, which are both markers for the primitive endoderm, are suppressed in Rest -/- ESCs. Transcript levels were
normalized to β-actin levels. The data are presented as the average values with SD of six independent samples.

(B) The exogenous expression of REST rescued the suppression of Gata4 and Gata6 in Rest -/- ESCs. Mean±SD of three independent samples.

(C) The expression of pluripotent genes in the embryoid body (EB) cells. The expression of Oct3/4, Nanog and Sox2 are upregulated in Rest -/- EB cells relative to the control EB cells. The data are presented as the mean±SD of six independent samples.

(D) Conditional Rest knockout ESCs were cultured under differentiation culture conditions and treated with doxycycline (2 μg/ml) for 24 hrs starting at 24 h. The cells were harvested at 96 h after the passage. The expression of Syt4, Oct3/4, Nanog and Gata4 after the conditional deletion of Rest under the differentiation culture condition. Note that the expression of Nanog and Syt4, but not of Oct3/4, were upregulated in the doxycycline-treated cells. The data are presented as the mean±SD of six independent samples.

(E) A schematic drawing of the doxycycline inducible REST ES cell line.
(F) Forty-eight hrs of the induction of REST causes the ESC differentiation into epithelium-like colonies with a decreased ALP activity.

(G) The forced expression of REST in ESCs leads to decreased expression of Nanog, Oct3/4 and Fgf5, whereas it results in increased expression of Gata6. The data are presented as the mean±SD of six independent samples.

(H) In vitro differentiation of REST-inducible ESCs into EBs under the absence or presence of doxycycline. The exogenous REST expression results in an increased number of Gata4-positive cells at the periphery of EBs.

(I) The Nanog overexpression dampens the REST-mediated ESC differentiation. REST was induced in Nanog-overexpressing and EGFP-overexpressing ESC colonies by the doxycycline exposure. The twenty-four hour exposure of doxycycline led to the rapid differentiation in EGFP-overexpressing ESCs (arrowheads), whereas Nanog-overexpressing ESCs retained an undifferentiated morphology. After the forty-eight hour exposure of doxycycline, sixteen out of 25 EGFP-overexpressing colonies (68%) started to differentiate, whereas none of Nanog-overexpressing colonies (0/21, 0%) revealed the evidence of differentiation.
(see also Figure S2D).
Yamada, et al.

Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance

Inventory of Supplemental Information

1. Supplemental Experimental Procedures
2. Supplemental References
3. Figure S1, related to Figure 1
4. Figure S2, related to Figure 2
5. Supplemental Figure Legends
1. Supplemental Experimental Procedures

Construction of the Rest-conditional knockout vector.

For the generation of a Rest-conditional knockout vector, DNA fragments for the 5’ and 3’ arms and exon 4 of the Rest gene were amplified by PCR from the BAC clones that contained a genomic locus of the Rest gene (BACPAC Resources Center, CHORI). These fragments together with the fragment of _IRES-EGFP-floxed pgk Neo_ were subsequently cloned into the pBluescript II SK vector (Stratagene), thus generating a plasmid pBSRIG, which was used to generate the conditional knockout construct (Figure 1A). In the pBSRIG, a loxP site was inserted into the intron just 5’ of the exon 4, which encodes the coRest binding site. In addition, a drug selection marker in the form of a _neomycin phosphotransferase_ gene under the control of the _phosphoglycerate kinase 1_ gene promoter (pgk-neo cassette flanked by loxP sites) was inserted into the 3’UTR of the Rest gene.

Generation of ES cells and mice.

Plasmid pBSRIG was linearized and electroporated into F1 (129SvJae x C57BL/6; V6.5
line) mouse ESCs and selected for drug resistance against neomycin. Selection was initiated 24 hr postpulse with G418 (300 μg/mL). The correctly targeted clones (3lox ESCs) were confirmed by a standard Southern blot analysis. In order to remove the pgk-neo cassette, 3lox ESCs from a targeted clone were transiently transfected with an expression vector encoding Cre-recombinase and the puromycin resistance gene (pCre-PAC). After electroporation, the cells were selected with puromycin for 48 hr to enrich for cells that had transiently expressed Cre-recombinase and puromycin resistance gene. The removal of the pgk-neo cassette was confirmed by Southern blotting, and by death in a G418-containing medium (2lox ESCs). Rest-/- ESCs (1lox ESCs) were obtained by repeated targeting using pBSRIG and pCre-PAC. ESCs from one properly targeted subclone in which the neomycin resistance cassette had been removed (2lox ESCs) were used for injection into blastocysts. The resulting chimeras were crossed with C57BL/6 mice to generate the founder colony. Human REST cDNA was amplified from a plasmid containing the human REST gene (Grimes et al., 2000) and it was introduced into the KH2 ES cell line as described previously (Beard et al., 2006; Hochedlinger et al., 2005) to generate the doxycycline inducible REST ES cell.
line.

EGFP- and Nanog-overexpressing REST-inducible ESCs were generated by electroporation with plasmids containing the CAG promoter-EGFP-ires-Zeocin gene (a gift from Hitoshi Niwa) (Niwa et al., 1991) and the CAG promoter-Nanog-ires-Zeocin gene, respectively, followed by Zeocin selection at a concentration of 40 μg/ml.

After 4 days selection, ES-cell colonies were treated with doxycycline (2 μg/ml) to induce the REST gene.

ES cell culture conditions.

Mouse ESCs (V6.5) were cultured under self-renewal conditions on feeder cells in standard ES media (Knockout DMEM (Gibco) supplemented with 15% FBS (Hyclone), 1X nonessential amino acids, 2mM L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin (all from Gibco), 0.1mM β-mercaptoethanol (Sigma), and with 1000 U/mL LIF (ESGRO, Millipore)) on 0.2% gelatin-coated tissue culture dishes.

Derivation of the conditional Rest knockout ES cell line containing doxycycline inducible Cre alleles.
The conditional Rest knockout ES cell line containing doxycycline inducible Cre alleles was derived from mouse E3.5 embryos that contain conditional Rest knockout (2lox) alleles together with both the Rosa 26-M2rtTA allele and ColAI-tetOP-Cre allele by the standard methods. AP staining was performed as described previously (Tsuji et al., 2008).

Teratomas and chimeric mice.

To obtain Rest -/- teratomas, 2x10^6 Rest -/- ESCs (1lox ESCs) were injected into the subcutaneous tissue of nude mice. Teratomas were harvested 3 weeks postinjection, then fixed overnight in 10% buffered formalin, paraffin embedded, and finally processed with hematoxylin and eosin staining. Rest -/- ESCs were transfected with the constitutive EGFP expressing retrovirus to visualize the in vivo contribution (Yamada et al., 2004). EGFP-labeled Rest -/- ESCs were then injected into BDF1 blastocysts, followed by transfer into the uteri of pseudopregnant ICR mice. The embryos were dissected at E12.5 and GFP signals were examined under a fluorescent stereo microscope (SZX16, Olympus) and the digital images were captured with an
Olympus DP70. The embryos were then fixed overnight in 10% buffered formalin, paraffin embedded, and processed with GFP immunostaining with anti-GFP antibody (Invitrogen).

In vitro differentiation.

For EB formation, ESCs (1.0 X 10^5) were seeded in non-adherent 24-well plates and then were cultivated in an ES medium without LIF. EBs were then collected and processed for both RNA extraction and histological analyses. Gata4 immunostaining was performed with anti-Gata4 antibody (Santa Cruz Biotechnology, inc.) on paraffin-embedded sections. The number of Gata4-expressing cells in the periphery of EB was determined using the Gata4-immunostained histological section (EBs 120-150 μm in diameter on histological sections, n=10).

Northern blot and quantitative RT-PCR.

Total RNA was prepared using either TRIzol reagent (Invitrogen) or RNeasy Plus Mini Kit (Qiagen) according to the manufacturer’s instructions. For a Northern blot
analysis, 5 μg of total RNA was analyzed by non-radioactive filter hybridization (Roche) with either the Rest Exon2 probe or the Rest Exon4 probe. The first strand cDNA was synthesized from 1 μg of total RNA using SuperScript First-Strand Synthesis System (Invitrogen) using oligo dT primers according to the manufacturer’s instructions. Real-time PCR was performed with SYBR Premix EX Taq (Takara) using a LightCycler 2.0 System (Roche) for each gene of interest. The primer sequences used in qRT-PCR analyses were obtained from the PrimerBank (http://pga.mgh.harvard.edu/primerbank/). Amplification curves and gene expression were normalized to the housekeeping gene β-actin, used as an internal standard. The average values with standard deviations of six or three independent samples are shown.

2. Supplemental References

9461-9467.

3. Figure S1, related Figure 1.
4. Figure S2, related to Figure 2.
5. Supplemental Figure Legends

Figure S1

(A) A Northern blot analysis using the probe for the remaining exon2 reveals no altered transcript from the remaining Rest promoter.

(B) Loss of Rest transcripts leads to the upregulation of the Rest-targeted neuronal genes, Syt4, Bdnf and Calb1. Transcript levels were normalized to β-actin levels.

The data are presented as the average values with SD of six independent samples.

(C) E12.5 chimeric mice were generated by injecting Rest -/- ESCs into blastocysts.

GFP immunostaining reveals that GFP-positive Rest -/- cells differentiated into neural tissue, bronchial epithelium and cartilage in vivo.

(D) The expression levels of Syt4, Oct3/4 and Nanog after the conditional Rest deletion.

The expression of Oct3/4 and Nanog did not change after the Rest ablation, whereas the expression of Syt4 had been derepressed. The data are presented as the mean±SD of six independent samples.

Figure S2
(A) *In vitro* differentiation revealed the EBs generated from Rest KO ESCs to contain a decreased number of Gata4-expressing cells in comparison to the control EBs (13.1±15.0/EB and 30.4±9.02/EB in RestKO8 EBs and V6.5 EBs, respectively, p<0.006 by Student’s-t test). Consistently, the expression of Gata4 was significantly lower in the Rest -/- EBs in comparison to the control isogenic EBs (V6.5).

(B) REST expression was detectable only in doxycycline-treated cells by RT-PCR. A Western blot analysis reveals ectopic REST expression in doxycycline-treated ES cells.

(C) The ectopic expression of REST suppresses the Nanog expression in Rest -/- ES cells. The data are presented as the mean±SD of three independent samples.

(D) The Nanog overexpression blocks the REST-mediated ESC differentiation. REST was induced in Nanog-overexpressing and EGFP-overexpressing ESCs by doxycycline exposure. After the forty-eight hour exposure of doxycycline, sixteen out of 25 EGFP-overexpressing colonies (68%) started to differentiate into an epithelium-like shape (arrowheads), whereas none of Nanog-overexpressing
colonies (0/21, 0%) revealed the evidence of differentiation.