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ABSTRACT

The collisions between self-gravitating gas (e.g. interstellar clouds or stars)

are investigated using the three dimensional Slnoothed Particle Hydrodynalnics.

We solve the Euler equati,on coupled with the Poisson equation numerically. The

formalislll to calculate the energy equation and to include the radiation reaction of

gravitational'waves are also presented. In the gas system with Newtonian gravity,

the criterion for gravitational instability is known as the Jeans criterion by linear

perturbation theory. We simulate the nonlinear evolution and find the dynamical

criterion different froln that. In supersonic head-on collisions between two stable

isotherlllal clouds, the shock compression increases the density and the self-gravity

can trigger the instability or induce the quadrupole oscillation as expected in the

tensor virial analysis. When we include the gas cooling effect, the cloud fragments

into small pieces. In the case of off-center collisions, the outcomes depend on

the nondilnensional constant q = JC3 /G M 2
, where M is the total Inass, J IS

the total angular momentum and C3 is the sound velocity of isothermal gas. If

the parallleter is small, q ;S 0.2, the shock compression triggers the gravitational

collapse and the rapidly rotating core fonns near the collisional center. The systelll

with q ~ 0.4 starts fission to form the binary cloud systelll after the collisional

Inerging, For the intennediate case, they lnake a merged disk with a bar-spiral

structure.
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§1. Introduction

The self-gravity plays an iUlportant role in the universe and involves some

difficult problems such as the many-body probleln or the fission and fragInentation

theory. The self-gravitating gas lllay be regarded as a kind of plasilla without the

Debye shielding since the gravity is always attractive. Although the two points

Inotions are perfectly understood in Newtonian Iuechanics, the dynaluical behavior

of the gaseous systeln cannot be treated analytically. We want to know what kind

of physical quantity decides the nonlinear evolution in this pure dynaluical systeln.

As an exaillple of the interaction between two gravitationally bound states, we

silnulate the collision of interstellar clouds.

To understand the star fonnation frolll the interstellar clouds, we have to

know the condition of gravitational instability. This corresponds to the onset of

phase change frOIH the diffuse state towards the condensed phase in which the

density grows up to 1020 tilues higher. The fact that the uniform gaseous mediul1l

is gravitationally unstable against the long wavelength perturbations is known

as the Jeans instability. While, the stability condition for the single hydrostatic

equilibriuln solution is the Bonnor-Ebert criterion,which indicates the InaxilllUll1

Illass of the stable solution M BE = 1.18(C~/G3Pe)1/2 . When the self-gravitating

isothennal gas are cOlnpressed and the density increases, the Inaxillluill 11lass which

is gravitationally stable is believed to be reduced. We investigate whether this idea

is true or not and search the new criterion of stability in the dynalnical processes.

In addition, lnany astrophysicists want to study on the origin of rotating

astronomical objects. The angular momentum distribution is a free function as

the initial condition for the evolution of rotating gas. This freedom is known to

decide the structure of the axisymmetric equilibriuln solutions. 1) We try to get

the inforillation about the initial distribution of angular 11lOluentulu for the objects

produced by the off-center collisions.
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§2. Basic Equations

Hydrodynanlics of the self-gravitating gas can be described by the Euler equa­

tions coupled with the Poisson equation for the gravitational potential. The lllasS

conservation is written as the equation of continuity,

~: + V(pv) = 0 (2.1)

In numerical calculations, the Euler equation should be solved with SOlne artificial

viscosity,

av 1- + (V.\7)V = --\7P - \7(1jJ + w) - €Qat p

The Poisson equation detenuines Newtonian self-gravitational potential1jJ,

(2.2)

(2.3)

The reaction from radiating gravitational waves causes the correction W to New­

tonian potential, 2)

G (5)
,T, _ D a {J
':l' - 5c5 . af3 X X

using the quadrupole luass luoment,

For the ideal gas with the specific-heat ratio " the equation of state is

(2.4)

(2.5)

(2.6)

We have to solve the energy equation to decide the internal energy U of the gas. We

have succeeded in silnulating the adiabatic evolution, but lllany infonnation frolll

the atoluic physics are still required to solve the radiative transfer equation or to

include the cooling function of interstellar gas. In this paper, we report lnainly on

the nature of isotherlllal gas i.e. P = pC;, because it makes the problem siluple

and is considered as a good approxilnation of the actual interstellar luolecular

clouds.
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Different froln the comlnon fluid, the self-gravitating gas does not need the

fixed boundary condition. (Can you imagine a box which holds the Sun?) It

lnakes the zero-density surface boundary by itself. For the soft gas whose poly­

tropic index n = 1/{I - 1) > 5, however, the boundary extends to infinity so

that we assume the gas is surrounded by the external hot lllediunl which exert the

constant pressure Pe on the surface and neglect the gravity from such a tenuous

lnediulll. It is the case in the actual universe, for exalnple, the lllolecular gas

clouds are often surrounded by the ionized hot regions.

§3. Smoothed Particle HydrodYllalllics

We treat the three dimensional initial value problelll using the numerical code

called S11100thed Particle Hydrodynamics.{3 , j) ,4) This scheme is a,kind of Monte

Cairo lnethod and the fluid system is treated as the enselnble of N-fluid eleluents

and the 1110tion of each element is described in Lagragian coordinates. This lnethod

has an advantage to treat the three-dilllensional space easily compared with the

Finite Difference Method, Each elenlent is assunled to have the saIne lnass rno

and it.s own internal density distribution, for which we chose the Gaussian type

slnoothing kernel. The local density of fluid is given by the superposition of densit~

distribution of all the elelnents,

N
1110 L 1 12 2p{~.)=- -exp{-I~·-~· Ih·)

t 11" !1r. h~ t;;
V" ;=1 ;

(3.1)

The slnoothing length of i-th fluid element is detennined locally in accordance

with the spatial variation of density as

(3.2)

where TJ is the coefficient which detennines the resolution. The gas motion is

described by the equation of motion for i-th fluid element

N
~. 1 L
_t = _ VP{~·) - V1/J{~') - € Q ..dt p{~ .) . t t. t;

t ;=1

(3.3)

We notice that the basic Partial Differential Equations are converted to Ordinary
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Differential Equations.

The components of Newtonian gravity can be calculated directly by integrat­

ing the lllass distribution instead of solving the Poisson equation.

(3.4)

§4. Energy Equations

To our SPH, we apply the energy equation developed for Particle-and-Force

(PAF) method, 5) and have tested the code in the case of an adiabatic shock tube.

Kinetic energy per unit mass of i-th element is

I{· = llv·1 2
~ 2 a (4.1)

The energy change rate of each particle should be given by the work that the other

particles do on it. The power is given by the product of force using the Inean value

of ea.ch pair velocities as

d N (v.+v.)-(I{. + U.) = "" F... a )dt a ~ L.....t a) 2
jf;i

(4.2)

where F:j is the pressure gradient and viscosity force exerted by i-th particle onto

j-th part.icle. This definition satisfies the energy conservation for the systelll in

which there is no external force. If all the interparticle force functions satisfy

the lllomentum conservation '(F: j = -Fji)' then the total energy conservation is

guaranteed as

dE d N r 1 N N
- = - "(1\. + U·) = - "" "" F ... (v. + v.) = 0dt dt L.....t a z 2 L...t L.....t a) a )

i=l i=l ii:i
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Froln the equation of motion, we know that

dI{i = v .. dVi = v ..~ F ..
dt Z dt Z L Z)

j=ti

(4.4)

Therefore, we get the energy equation which calculates the change of fluid tellT­

perature,

dUo 1 N

d/ = 2L F:r(vj - vi)
j=ti

(4.5)

This equation can be rewrit ten in the fonn elilninating the negative internal energy

as,

dUo N 1
dt

Z

= Ui L U. + u. F:j .(V j - Vi)
j =ti Z J

'§5. NUlnerical Results

(4.6)

As the initial condition, we aSSUllTe the hydrostatic' clouds of mass M collide

wit.h the relative velocity V and the impact paralueter b. In the collision with the

relative velocity greater than the sound velocity, the shock-colnpressed layer can

be fonned. In this supersonic interactions, the Inain difficulty is concerning to the

choice of artificial viscosity. The pure particle schelne cannot avoid the particle

1.5 t-Q.88 SC; penetration. 6) Another'SPH using the
.: IIL

1.0 .. :.:.:.::::.:.:.:.. constant slnoothing length h is in a.__....__ .
'--' '--'

0.5 .::'- ~~:~ -'::. lilnited success to reproduce the analytic
. .

y 0.0 ~ ~ shock condition in 3-D collisions. 7) With
- -- -

-1. 5 w-_J----L_-'-_-'------JI.----L-J
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X
Fig.!. The velocity vectors in the x-y plane

at the shock formation stage. Clouds
collide along the x-axis with V = 50s.
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. .._-_ _-_.--_ --_ ..__~ ~__ .

..... "" ....

;;'\'1::" I
! •

the saIne viscosity used in the paper

of Miyalna et a/., 8) we reproduce the

central density increase such as P/ Po f'oJ

(V/C~)2 for the head-on collisions in the

range of V ::s 6C~ using N =8000 particles

(Fig.I).
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As a result, the gravitational instability is induced in our siululation and

t - 0.44

the central part of the cloud begins to collapse even if the total mass is as

sllla.ll as rv 0.8MBE , The collapsing model shows the siIllilarity density profile

p ex r- 2 , which is typical to the isothermal collapse (Fig.2). FroIII the forty

calculated lllodels, 9) we find that disruption or fragIllentation by the isothenllal

collision is less likely and the sticking

probability is very high. The typical

evolu tion of the stable head-on collision

is the oblate-prolate oscillation which

leads to the new hydrostatic equilibriuIll

state. The period of oscillation is

In agreeulent with the eigen frequency

of the quadrupole oscillation of the

cornpressible self-gravitating gas. 9)

2
10

P
1

10

The outcome~

If q ;S 0.2 the" angular

In the case of off-center collisions,

the shock structure does' not affect the

nonlinear evolution.

parauleter.

llloillenturn is not sufficient to stop the

gravitational collapse. The contraction

proceeds forming the rapidly rotating

core near the collisional center. With
'. < Fig.2. The evolution of density in the x-

slIghtly large angular lllolllentuIII , 0.2 rv y plane for the triggered collapse model

q ;S 0.4, the collision lllakes a merged disk (M =1.13 MBE ! V =3Cg
! b =0 ).

with a bar-spiral structure as in Fig.3. The systelll with q ~ 0.4 starts fission to

depend on the nondinlCnsiollal paraIlleter

written with constants of Illotion, q ­

JC3 /GM 2. The linear analysis 10)

and three diluensional siululations of

dynaluics of rotating isothermal clouds

8) also indicate the ill1portance of this
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appear as the binary cloud system after the collisional merging.

For the case of strong oblique shock, the shocked region reduce the collisional

velocity and becomes a rigidly rotating core, while the unshocked region extends

as the halo in Kepler rotation. In the case of collapse triggered by the weak shock,

the density shows the similarity profile typical to the isothermal collapse and the

flat rotation curve v if> ~ const appears in the outer envelop. In this way, the

merged system gets the spin angular momentum which results from the initial

orbital angular momentum. The total angular momentum is always conserved,

but the distribution of the specific angular momentum changes under influence

of the non-axisymmetric process, that is, the gravitational torque. In the merged

cloud made by the off-center collision, there exists the strong non-axisymmetric

bar mode perturbation and it continues to transfer the specific angular momentum.

That means the central part gets the higher density and the outer envelop extends

the arm-spiral structure easily.

Fig.3. The equidensity surface of the stable merging model after the off-center
collision (q '" 0.2). The first disk is made by the shock compression, then it
changed the flattening direction due to the angular momentum and makes a
rotating disk with a bar structure.

In addition, we simulate the tidal encounter without direct collision and found

that tidal torques make the initially spinless clouds start rotation even if there is
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no viscosity. The induced spin angular 1110lnentUln is about several percents of the

total angular In0111cntU111 of the syste111.

To investigate the effect of equation of state, we study the colliding rnodel

whose polytropic index is assu111ed as I f',J. 0.73 according to the radio observational

data of 1110lecular clouds. 11) Such a kind of gas cools down by the compression so

that the very thin disk fonns at the collisional interface. Due to the gravitational

instability of thin disk, the fragmentation proceeds and 111any s111all clulnps

2 with the size comparable to the disk

thickness appear as shown in FigA. The

central part continues collapsing, while

the other clulnps remain as a group of

slnall cloudlets.

As in the experirrlents of elelnentary

particle physics, there are Inany other

physical parameters in the si111ulation of

collisions between the self-gravitating gas

FigA. The density contours in the y-z plane nlass ratio, initial spin rnotion and
for the cooling model. The temperature 'its direction relative to orbital angula~
decrease down to about a third of initial
value and creates many clumps. Inomentum and so on. We will go on this

survey developing the code which can solve the adiabatic collision to si111ulate

the evolution of stellar systeln. 3-D post-Newtonian hydrodynamic code is also

planned to calculate the gravitational waves and its back-reactions to the fluid

Inotion. We think that the nUIllerical solutions can help us to understand the

nature of nonlinear interaction in the self-gravitating systel11. However, the

analytic solutions are 1110re valuable even with SOlne strong assu111ptions. In order

to confirnl the validity of the nUIllerical solutions, the analytic nonlinear solutions

in dynalnical processes are required in our field of astrophysics.
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