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ABSTRACT

The collisions between self-gravitating gas (e.g. interstellar clouds or stars)
are investigated using the three dimensional Smoothed Particle Hydrodynamics.
We solve the Euler equation coupled with the Poisson equation numerically. The
formalism to calculate the energy equation and to include the radiation reaction of
gravitational waves are also presented. In the gas systerﬁ with Newtonian gravity,
the criterion for gravitational instability 1s known as the Jeans criterion by linear
perturbation theory. We simulate the n;)nlinear evolution and find the dynamical
criterion different from that. In supersonic head-on collisions between two stable
1sothermal clouds, the shock compression increases the density and the self-gravity
can trigger the instability or induce the quadrupole oscillation as expected in the
tensor virial analysis. When we include the gas cooling effect, the cloud fragments
into small pieces. In the case of off-center collisions, the outcomes depend on
the nondimensional constant ¢ = JC,/GM?, where M is the total mass, J is
the total angular momentum and Cj is the sound velocity of isothermal gas. If
the parameter is small, ¢ < 0.2, the shock compression triggers the gravitational
collapse and the rapidly rotating cbre forms near the collisional center. The system
with ¢ 2 0.4 starts fission to form the binary cloud system after the collisional
merging, For the intermediate case , they make a merged disk with a bar-spiral

structure.
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§1. Introduction

The self-gravity plays an important role in the universe and involves some
difficult problems such as the many-body problem or the fission and fragmentation
theory. The self-gravitating gas may be regarded as a kind of plasma without the
Debye shielding since the gravity is always attractive. Although the two points
motions are perfectly understood in Newtonian mechanics, the dynamical behavior
of the gaseous system cannot be treated analytically. We want to know what kind
of physical quantity decides the nonlinear evolution in this pure dynamical system.
As an example of the interaction between two gravitationally bound states, we

simulate the collision of interstellar clouds.

To understand the star formation from the interstellar clouds, we have to
know the condition of gravitational instability. This corresponds to the onset of
phase change from the diffuse state towards the condensed phase in which the
density grows up to 10?0 times higher. The fact that the uniform gaseous medium
1s gravitationally unstable against the long wavelength perturbations is known
as the Jeans instability. While, the stability condition for the single hydrostatic
equilibrium solution 1s the Bonnér—Ebert criterion,which indicates the maximum
mass of the stable solution Mpp = 1.18(C3/G®P,)'/? . When the sell-gravitating
isothermal gas are compressed and the density‘ increases, the maximum mass which
1s gravitationally stable is believed to be reduced. We investigate whether this idea

1s true or not and search the new criterion of stability in the dynamical processes.

In addition, many astrophysicists want to study on the origin of rotating
astronomical objects. The angular momentum distribution is a free function as .
the initial condition for the evolution of rotating gas. This freedom is known to
decide the structure of the axisymmetric equilibrium solutions. 2 We try to get
the information about the initial distribution of angular momentum for the objects

produced by the off-center collisions.
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§2. Basic Equations

Hydrodynamics of the self-gravitating gas can be described by the Euler equa-
tions coupled with the Poisson equation for the gravitational potential . The mass

conservation is written as the equation of continuity,

dp
L , 2.1
2 4 V(pv) =0 (2.1)
In numerical calculations, the Euler equation should be solved with some artificial
viscosity,
v 1
'—a‘{ +('U-V)'U = —;VP'—’V(?/)-F‘I’) -—GQ . (2.2)

The Poisson equation determines Newtonian self-gravitational potential v,
Ay =4nGp . (2.3)

The reaction from radiating gravitational waves causes the correction ¥ to New-

2)

tonian potential,

| (5)
G |
=3 D,z zf | (2.4)

using the quadrupole mass moment,
D, = /p(maxﬂ — 3bapatz,)dV . (2.5)
For the 1deal gas with the specific-heat ratio v, the equation of state is
P=(y-1)pU . | (2.6)

We have to solve the energy equation to decide the internal energy U of the gas. We
have succeeded in simulating the adiabatic evolution, but many information from
the atomic physics are still required to solve the radiative transfer equation or to
include the cooling function of interstellar gas. In this paper, we report mainly on
the nature of isothermal gas i.e. P = p(C?, because it makes the problem simple
and is considered as a good approximation of the actual interstellar molecular

clouds.
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Different from the common fluid, the self-gravitating gas does not need the
fixed boundary condition. ( Can you imagine a box which holds the Sun ?) It
makes the zero-density surface boundary by itself. For the soft gas whose poly-
tropic index n = 1/(y — 1) > 5, however, the boundary extends to infinity so
that we assume the gas is surrounded by the external hot medium which exert the
constant pressure P, on the surface and neglect the gravity from such a tenuous
medium. It is the case in the actual universe, for example, the molecular gas

clouds are often surrounded by the ionized hot regions.

§3. Smoothed Particle Hydrodynamics

We treat the three dimensional initial value problem using the numerical code
called Smoothed Particle Hydrodynamics.(3 , £ )4 This scheme is a kind of Monte
Calro method and the fluid system is treated as the ensemble of N-fluid elements
and the motion of each element is described in Lagragian coordinates. This method
has an advantage to treat the three-dimensional space easily compared with the
Finite Difference Method, Each element i1s assumed to have the same mass mg
-and 1ts own internal density distribution, for which we chose the Gaussian type
smoothing kernel. The local density of fluid is given by the superposition of density
distribution of all the elements,

mo

N
o) = - ﬁZ%exp(—lmi—wjlz/h?) )
J=1 7

The smoothing length of i-th fluid element is determined locally in accordance

with the spatial variation of density as

| _ .mo 1/3 '
hy = "(p(:c,.)) , (3.2)

where 7 is the coeflicient which determines the resolution. The gas motion is

described by the equation of motion for i-th fluid element

dv; 1 al |
o=y V) - V@) - ej}:,l Q; - (3:3)

We notice that the basic Partial Differential Equations are converted to Ordinary
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Differential Equations.

The components of Newtonian gravity can be calculated directly by integrat-

ing the mass distribution instead of solving the Poisson equation.

\%% Gmoz [erf( \/_ h, exp(— z1/112) . (3.4)
h,

where z;; = |, — z].

$4. Energy Equations

To our SPH, we apply the energy equation developed for Particle-and-Force
(PAF) method, ®) and have tested the code in the case of an adiabatic shock tube.

Kinetic energy per unit mass of i-th element 1s

The energy change rate of each particle should be given by the work that the other
particles do on it. The power is given by the product of force using the mean value

of each pair velocities as

N + 0.
ST =Y B (222 (1.2

J#i

where F is the pressure gradient and viscosity force exerted by i-th particle onto
J-th partlcle. This definition satisfies the energy conservation for the system in
which there is no external force. If all the interparticle force functions satisfy
the momentum conservation (I'-;J = ~F}i), then the total energy conservation is
guaranteed as

l\ﬂ*—‘

N
dEl.  d
tZE—ZIi-*-Ui):

N N
Y Y Fj(v;+v)=0 . (4.3)
i=1 j#i
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From the equation of motion, we know that

N
dK; dv;
i#i

Therefore, we get the energy equation which calculates the change of fluid tem-

perature,
N
du, 1
d 9 ZFij'(”j -v) . (4.5)
i#i
This equation can be rewr_ittén in the form eliminating the negative internal energy
as,
N
dU,; 1
T UiZmEj-(”j -v) (4.6)
j#i

- §5. Numerical Results

As the initial condition, we assume the hydrostatic clouds of mass M collide
with the relative velocity V' and the impact parameter b. In the collision with the
relative velocity greater than the sound veloéity, the shock-compressed layer can
be formed. In this supersonic interactions, the main difliculty i1s concerning to the

choice of artificial viscosity. The pure particle scheme cannot avoid the particle

LSF tog.es T e penetration. ® Another SPH using the
1.oF E' T constant smoothing length h 1s in a
0.5} éz—w—:—;; = limited success to reproduce the analytic
Yoo} i ] shock condition in 3-D collisions. ) With
0.5} E_- _*._..__..*- ‘;-‘ ] the same viscosity used in the paper
1.0l _-t::“::— ] of Miyama et al., %) we reproduce the
sl i | central density increase such as p/p, ~
-5 1.0 0.5 0.0 0.5 1.0 LS (V/C;s)? for the head-on collisions in the

X
Fig.1. The velocity vectors in the z-y plane  range of V' S 6C, using N=8000 particles
at the shock formation stage. Clouds Fie 1
collide along the z-axis with V = 5C's. ( 18- )
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As a result, the gravitational instability is induced in our simulation and

the central part of the cloud begins to collapse even if the total mass is as

small as ~ 0.8M ;. The collapsing model shows the similarity density profile

p o r~% which is typical to the isothermal collapse (Fig.2). From the forty

)

calculated models, ?
collision 1s less likely and the sticking
probability is very high. The typical
evolution of the stable head-on collision
1s the oblate-prolate oscillation which
leads to the new hydrostatic equilibrium
state. The period of oscillation is
in agreement with the eigen frequency
of the quadrupole oscillation of the

9)

compressible self-gravitating gas.

In the case of off-center collisions,
the shock structure does not affect the
nonlinear evolution. The outcomes
depend on the nondimensional parameter
written with constants ol motion, ¢ =
JC,/GM?.  The linear analysis 10)
and three dimensional simulations of
dynamics of rotating isothermal clouds
%) also indicate the importance of this
parameter. If ¢ < 0.2 the -angular
momentum 1is not sufficient to stop the
gravitational collapse. The contraction
proceeds forming the rapidly rotating
core near the collisional center. With

slightly large angular momentum, 0.2 <

q 5 0.4, the collision makes a merged disk

we find that disruption or fragmentation by the isothermal

t-

Fig.2. The evolution of density in the z-
y plane for the triggered collapse model
(M =113 Mpg, V=3C,b=0).

with a bar-spiral structure as in Fig.3. The system with ¢ & 0.4 starts fission to
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appear as the binary cloud system after the collisional merging.

Ior the case of strong oblique shock, the shocked region reduce the collisional
velocity and becomes a rigidly rotating core, while the unshocked region extends
as the halo in Kepler rotation. In the case of collapse triggered by the weak shock,
the density shows the similarity profile typical to the isothermal collapse and the
flat rotation curve v 4 ~ const appears in the outer envelop. In this way, the
merged system gets the spin angular momentum which results from the initial
orbital angular momentum. The total angular momentum is always conserved,
but the distribution of the specific angular momentum changes under influence
of the non-axisymmetric process, that is, the gravitational torque. In the merged
cloud made by the off-center collision, there exists the strong non-axisymmetric
bar mode perturbation and it continues to transfer the specific angular momentum.
That means the central part gets the higher density and the outer envelop extends

the arm-spiral structure easily.

Fig.3. The equidensity surface of the stable merging model after the off-center
collision (¢ ~ 0.2). The first disk is made by the shock compression, then it
changed the flattening direction due to the angular momentum and makes a -
rotating disk with a bar structure.

In addition, we simulate the tidal encounter without direct collision and found

that tidal torques make the initially spinless clouds start rotation even if there is
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no viscosity. The induced spin angular momentum is about several percents of the
total angular momentum of the system.

To investigate the effect of equation of state, we study the colliding model
whose polytropic index is assumed as y ~ 0.73 according to the radio observational
data of molecular clouds. ") Such a kind of gas cools down by the compression so
that the very thin disk forms at the collisional interface. Due to the gravitational

instability of thin disk, the fragmentation proceeds and many small clumps

with the size comparable to the disk
thickness appear as shown in Fig.4. The
central part continues collapsing, while
the other clumps remain as a group of
small cloudlets.

As in the experiments of elementary

particle physics, there are many other

physical parameters in the simulation of

collisions between the self-gravitating gas

Fig.4. The density contours in the y-z plane mass ratio, initial spin motion and

for the cooling model. The temperature “js djrection relative to orbital angular
decrease down to about a third of initial :

value and creates many clumps. momentum and so on. We will go on this
survey developing the code which can solve the adiabatic collision to simulate
the evolution of stellar system. 3-D post-Newtonian hydrodynamic code is also
planned to calculate the gravitational waves and its back-reactions to the fluid
motion. We think that the numerical solutions can help us to understand the
nature of nonlinear interaction in the self-gravitating system. However, the
analytic solutions are more valuable even with some strong assumptions. In order
to confirm the validity of the numerical solutions, the analytic nonlinear solutions

in dynamical processes are required in our field of astrophysics.
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