<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>可逆なセル・オートマトンと統計力学 基研長期研究会「カオスとその周辺」研究会報告</td>
</tr>
<tr>
<td>作者(s)</td>
<td>武末 眞二</td>
</tr>
<tr>
<td>論文</td>
<td>物性研究</td>
</tr>
<tr>
<td>発行日</td>
<td>1988-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93145</td>
</tr>
<tr>
<td>日本語</td>
<td>部門研究報告</td>
</tr>
<tr>
<td>公開日</td>
<td></td>
</tr>
<tr>
<td>公開形式</td>
<td>部門研究報告</td>
</tr>
<tr>
<td>公開形式</td>
<td>部門研究報告</td>
</tr>
<tr>
<td>公開形式</td>
<td>部門研究報告</td>
</tr>
<tr>
<td>公開形式</td>
<td>部門研究報告</td>
</tr>
</tbody>
</table>
テントックマルチゲートの順に多くなっているのでに対して、ファジーアトラクタの相関次元は逆に減少しているという事実である。この事実に対する説明に関して今のわれわれは考えをもっていない。今後の課題として残っている。

引用文献

図4 いくつかのファジーアトラクタの相関次元。$F(4)$，インターミッテント，マルチゲートの3種類に対して，相関次元の埋め込みによる変化が描かれている。

20. 可逆なセル・オートマトンと統計力学

東大教養 武末真二

前年に引き続いて，可逆なセル・オートマトンを用いた統計力学の基礎的研究について，新しい結果を報告した。

可逆なセル・オートマトンは，その状態の離散性のために，自動的にリウヴィルの定理を満たす。また，ある場合には，エネルギーとみなすことが出来るような保存量（加法的保存量）を持つことが分かっている。従ってその場合，形式的に統計力学の議論を展開することができ，統計的動力学的根拠（エルゴド問題）という，古典的ではあるが未解決の問いを発することが可能になる。しかもセル・オートマトンの特性により，しらみつぶしと数え上げの手法によって，ある程度一般的なクラスのモデルたちを分類することが出来る。そしてこの分類は，一般論の構築に対して大きな手がかりとなるであろう。また，実数概念が登場しないので，シミュレーションを行うにしても正確なシミュレーションが可能である，少なくともシミュレーションそのものに誤差はいりこむ心配はない。（もちろん統計誤差は存在する。）

以上のような考察に基づき，簡単なモデルの族（Elementary Reversible Cellular Automata 略して ERCA と呼ぶ）を用いて，これらがどういう熱力学的振舞いを示すかについて分類を行った。ERCAは，次式で定義される。
研究会報告

\[\sigma_{i}^{t+1} = f(\sigma_{i-1}^{t}, \sigma_{i}^{t}, \sigma_{i+1}^{t}) \quad \text{XOR} \quad \sigma_{i}^{t} \]

\[\sigma_{i}^{t+1} = \sigma_{i}^{t} \]

\(\sigma_{i}^{t}, \sigma_{i}^{t} \) は、時刻 1 におけるサイト i 上の変数で、0 または 1 の値にとる。f は、3 変数のブール関数、XOR は排他的論理和を表す。異なる f に対して、それぞれ異なるモデルが得られることになる。各々のモデルを表すのに、f の値をある並びに 2 進法で読んだ値、\(\sum 2^{\lambda + 2\mu + \nu} f(\lambda, \mu, \nu) \) と、可逆 (reversible) を表す R を用いて、ルール \(90R \) （例えば、\(f(\lambda, \mu, \nu) = \lambda \text{XOR} \nu \) の時）のように呼ぶことにする。

前回報告したように、我々はこれらのモデルの族に対して、まず次のような形に書ける加法的保存量の有無を調べた。

\[\Phi = \sum_{i} F(\sigma_{i}, \sigma_{i+1}, \sigma_{i}, \sigma_{i+1}) \]

実はここでブール代数の変数としての 0, 1 と、普通の整数としてのそれらとの混同が行われている。しかし、物理の人間にとってはそれらを区別することはあまり意味がないと思われるし、また記号の節約のためにもこのままの記法を用いる。

すべての ERCA がこのような保存量を持つのわけではない。また、1 つの ERCA が複数個の加法的保存量を持つという場合もある。さらに注意すべき点は、局所的な量が保存する場合もあり、この局所的保存量は往々にして、エネルギー（加法的保存量）の伝播を妨げる働きをするということである。こうして、ERCA は保存量に関して、i）加法的保存量も局所的保存量も共に存在するものの、ii）加法的保存量は存在するが局所的保存量は存在しないものの、iii）加法的保存量も局所的保存量も存在しないものの、の 3 つに分類される。簡単な考察から分かるように、統計力学が成立する可能性を持つのは、iii）に属するモデルだけである。i ii）に属するモデルについて、そのルールとエネルギーの対応を表 1 に示す。

加法的保存量は、上の i の形に書けるものに限らず、F が 2 個のサイトでなく、もっと多数の方サイト上の変数に依るものもあると考えられる。このような量は確か存在するし、統計力学に重大な影響を持つので重要であるが、これを直接手で確かめるのは非常に面倒であり、出来ていない。これらの量については逆に、期待される熱力学的振舞いからのずれによって、その存在の有無を知るということを考えている。

局所的保存量については、今回更に詳しく調べた結果、連続した 4 サイトの変
表 1

<table>
<thead>
<tr>
<th>ルール</th>
<th>エネルギー $F(x, y, \hat{x}, \hat{y})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>90R</td>
<td>$\left(x - \hat{y} \right)^2 + \left(\hat{x} - y \right)^2$ (1) $xy - \hat{x}\hat{y}$ (IV)</td>
</tr>
<tr>
<td>26R</td>
<td>$\left(x - \hat{y} \right)^2 + \left(\hat{x} - y \right)^2$</td>
</tr>
<tr>
<td>91R, 123R</td>
<td>$1 + xx + yy \cdot \left[\left[1 - 2(1-x)(1-y) \right] \left[1 - 2(1-x)(1-y) \right] \right] x\hat{y} - \hat{x}\hat{y}$</td>
</tr>
<tr>
<td>77R</td>
<td>$x\hat{y}(1 - 2\hat{x} - 2\hat{y}) - \hat{x}\hat{y}(1 - 2x - 2y)$ (III)</td>
</tr>
<tr>
<td>94R, 95R</td>
<td>$x\hat{y} - \hat{x}\hat{y}$</td>
</tr>
</tbody>
</table>

(1), (II), (III), (IV)はエネルギーの種類を表す。

数の関数が保存しないモデルでは、5サイト、6サイトの変数の関数も保存しないということが分かった。これから、次のような conjecture が導かれる。

Conjecture：無限系のERCAでは、4サイトの局所的保存量が存在しなければ、局所的保存量は存在しない。

これは、より一般には、局所保存則の最小のrangeは相互作用のrangeによって決まるということを表す。即ち、もしこのconjectureが正しければ、局所的保存量に関しては、有限の手続きてその有無が判定できることになる。

我々はまず、ERCAの基本的な性質として、小さな系における周期軌道の個数を数え上げた。その結果、その数の変化のしかたはルールに依らず、系の大きさとともに指数関数的に増大することがわかった。これは、有限系のERCAでは、密な意味でのエルゴード性が成立していない、つまりエネルギー面に多数の軌道が混在していることを表す。しかし、熱力学極限でどうなるかは、また別
研究会報告

の問題である。我々は、その進行的振舞いを見るために、大きな系を用いたシミュレーションによつ、次のような熱力学的振舞いについて調べた。即ち、1）部分系のエネルギーに関するカノニカル分布の実現、2）相関関数を用いたアンサンブル平均と時間平均との比較、3）カノニカル分布への緩和の有無、そして4）熱伝導におけるフーリエの法則の実現の4つである。いうまでもなく、1）、2）は平衡系の性質であり、3）、4）は非平衡系の性質である。これにより、タイプi i i のERCAについて、表2の結果を得た。

この表からわかるように、平衡系の性質についてはどれも統計力学と矛盾しない結果を与えるが、非平衡の性質はルールに依ってきざまされている。これらのモ

<table>
<thead>
<tr>
<th>1ぬわ^</th>
<th>ルール</th>
<th>カノニカル分布</th>
<th>相関関数</th>
<th>緩和</th>
<th>熱伝導</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>9 0 R</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>(II)</td>
<td>2 6 R</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>(III)</td>
<td>9 1 R</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>1 2 3 R</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>(IV)</td>
<td>7 7 R</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td>△</td>
</tr>
<tr>
<td>(V)</td>
<td>9 0 R</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>9 1 R</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>9 4 R</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>9 5 R</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>1 2 3 R</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
</tbody>
</table>

〇はその性質が成り立つことを、×はそれが成立しないことを表す。相関関数における△は、他の保存量の存在を仮定すれば統計力学と矛盾しない事を示し、熱伝導の△は、温度勾配はできるものの、フーリエの法則は満たさない事を示す。
モデルは、エネルギーの伝播可能性により、おそらく理想気体と同様な意味での無限系のエルゴード性は満たしていると思われる。つまり、有限系のエルゴード性という条件は、熱力学的振舞いの成立に関しては厳しすぎるが、無限系がペルヌーイであったとしても、高次元平衡統計力学の成立しか保証はないということになる。従って、今後研究すべきことは、緩和や熱伝導などの物理現象に対応した、それらを成立させるための力学系に関する条件を、純化した形で取り出すことにある。この目標を目指して、現在も研究は進行中である。

参考文献：

22. 多自由度ハミルトン系における転移現象とリャプノフ解析

東大・教養 小西 哲郎

大自由度ハミルトン系の動的性質は、古典統計力学の基礎として、また無限自由度系の KAM 理論と関連して興味が持たれる。が、その研究はまだあまりすすんでいない。今回は、その特徴付けをどうやるかを 1 次元 map lattice を例にとり考えてみた。

モデルとしては次のような 1 次元 map lattice をとる；

\[(p_i, x_i) \rightarrow (p_i', x_i'), \quad i = 1, 2, \ldots, N, \text{ periodic} \]

\[
p_i' = p_i + g(x_{i+1} - x_i) - g(x_i - x_{i-1}),
\]

\[
x_i' = x_i + p_i',
\]

\[
g(x) = \frac{K}{2\pi} \sin (2\pi x), \quad K > 0
\]

系を特徴付ける量として今回は Lyapunov spectrum (及び Lyapunov vector) に着目してみた。これらは大自由度系に特有の量であり、これらが系の相空间構造の情報をひき出してくることが期待される。

系(1)の Lyapunov spectrum を simulation する。比較対照のため、(1) で \(x_i\) を \([0, 1]\) 一様乱数にして得られる random Jacobi matrix の Lyapunov spectrum を求める。\(K \geq 1\)

では両者の形状は一致し、\(K\) の増加とともに直線から上に凸なものになる。一方、\(K \leq 1\)で

"カオスとその周辺"