<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>パラメトリック励起下でのマグノン系のカオス 基研長期研究会「カオスとその周辺」研究会報告</td>
</tr>
<tr>
<td>Author(s)</td>
<td>味野 道信 山嶋 比登志</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 基研長期研究会「カオスとその周辺」研究会報告</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93155</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
9. パラメトリック励起下でのマグノン系のカオス

岡山大・理 味野 道信 山崎 比登志

強磁性体、反強磁性体では、外部磁場と平行にマイクロ波磁場を加える平行励起法（Parallel Pumping）により、マグノン対をパラメトリック励起することができる。この時励起されるのは、励起マイクロ波の半分の周波数で、大きさが等しく互いに反対方向に進む波数ベクトルを持つマグノン対、つまり定在波である。この方法では、励起電力が弱い時は、熱平衡状態にある少数のマグノンによる、極弱い吸収が有るのがで、通常これは観測にかからない。ところが、励起電力が閾値 \(P_c \)を越えると、励起が緩和を上回り、特定のモードのマグノンが雪崩現象的に増加する。励起をさらに強くすると、いくつかのモードが熱平衡値を超えて存在する様になる。そして、このモード間の非線形結合により自励発振、さらにはカオスが発生することが知られている。

今回、YIG（イットリウム鉄ガーネット）を用いた、マイクロ波平行励起実験の結果について報告する。実験は、温度4.2Kで円盤状YIG単結晶を、8.9 GHzマイクロ波を用いて励起した。外部静磁場、マイクロ波磁場共に、磁化容易軸である[111] 方向に加えた。マグノン数の変動は、吸収されるマイクロ波電力の振動として検出される。これをデジタルメモリ上に取り込んだ後、シグナルアナライザー、及びマイクロコンピュータに転送し解析を行った。なお、外部静磁場は、波数 \(k = 0 \) で外部静磁場に対して直角に進むモードが最初に励起される値に固定している。

まず、励起パラメータに相当するマイクロ波の増加と共に、周波数の2の発振を経てカオスが観測された。今までのところ、この過程で部分的には周期4も現れるが、安定な周期4の振動は観測されていない。これをパワースペクトルで見ると、\(f_0, 1/2 f_0, 1/4 f_0, 3/4 f_0 \) ピークを持つバンド状から、\(f_0 \) 以外のなめらかなバンド状に変化して、カオスになる。これは、外部静磁場などの実験パラメータのふるつきによると考えられる。このカオス状態では、ストレンジアトラクタのフラクタル次元が相関積分法で2.0と求まり、図1の様に明確な一次元リターンマップが得られることからも、典型的な少数自由度カオスと考えられる。このリターンマップから、最大リアプノフ指数 \(\lambda = 0.34 \) を得た。さらに励起を強くすると、周期4から周期2を経て再び単一周期発振となる。この時、基本発振周波数、振幅共に増大している。

励起をさらに強くすると、再び非周期発振が観測される様になる。このパラメータ域では多くの興味ある発振が得られている。ここでは、その一部のパワースペクトルを紹介する（図2）。なお、最初にマグノンが不安定増大する閾値電力 \(P_c \)に対する \(\log \) 比で励起電力を表記する。

\(P = 7.52 \text{ dB} \) では、周期6の振動が観測され、\(P = 7.79 \text{ dB} \) で再び長周期の振幅変調を含むカオス的発振になる。この時ストレンジアトラクタの次元として2.8を得た。更に励起を強くすると再び周期的になった後、波形上に瘤が発生し、それが大きくなり、基本周波数が2倍となった波形が得られる（\(P = 10.95 \text{ dB} \)）。

—545—
研究会報告

図1

图2-(1)

して、P=13.01 dB でパワースペクトルに多くのピークを持つアトラクタの次元3.0の振動が見られた。この時、一次元リターンマップを描くと明確ではないが決定論的要素が若干認められる。その後、P=13.46 dB で周期5の振動が観測された。この周期5の振動は、各成分が整数比からずれる様に変化し、P=14.32 dB ではアトラクタの次元3.1の準周期的発振、P=15.12 dB では周期12、更に P=16.20 dB ではアトラクタの次元4.2の非周期発振が観測された。

この二度目の周期発振後のパラメータ域でのカオスが、最初に現れたカオスと同一マグノン緩和機構から発生しているかどうか、つまり二度目の周期発振が励
起パラメータの変化のみによるウィンドウかどうかは、判っていない。これは、励起電力により試料が発熱し、マグノン-マグノン、マグノン-フォノン相互作用等が変化したために発生したとも考えられるためである。またこの領域では、明確な一次元リターンマップは得られておらず、ここでのアトラクタの次元が、最初に現れたストレンジアトラクタの次元（2.0）に比べて明らかに高くなっていることからも、より多くのモードのマグノンがこのシステムに関与していると考えられる。つまり、より高次のカオスではないかと思われる。従って、今まではマグノン系でのモデル、シミュレートは主として2モードモデルで行われてきているが、今後、より高次のモデルによるシミュレートと、実験との比較が必要になると考えられる。そして、このストレンジアトラクタの比較から、大電力励起下におけるマグノン緩和機構モデルの検証も行えるのではないかと思われる。

参考文献

「カオスとその周辺」