<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者(s)</td>
<td>木村 研一</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 京都大学理学部物理学科修士論文題目・アブストラクト 1987年度 その1</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-08-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93172</td>
</tr>
<tr>
<td>型式</td>
<td>個別論文</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
12. MgO 単結晶中の鉄イオンの常磁性共鳴

木村 研一

非磁性酸化物（MgO）に鉄イオンを少量ドープした試料の常磁性共鳴吸収（ESR）を測定し、
アニーリング条件による、鉄イオンを囲む結晶場パラメータの変化を調べる。

酸化マグネシウム単結晶（NaCl型）中に鉄イオンをドープすると、常温では3価イオンの共鳴が観測され、その角度変化をとくで対称性はcubicであり、その構造はラジアータ-αで記述される。
個、それと対称性を持つ信号も見いだされている。2）これはFe³⁺はMg²⁺と置換し、
電荷補償のためMg²⁺の欠陥が生じると考えられ、それがFe³⁺の（110）方向のnearest neighbor
にある場合と（100）方向のnext nearest neighborにある場合とがあり、ラジアータ-Dで記述される。

本研究では a, D で記述される各々の信号の空気中アニーリングの温度、時間による変化をとらえる事によってFe³⁺とMg²⁺欠陥との結び付きの機構を探る。

試料は市販の単結晶（Fe 4600 ppm）を用いた。測定は通常のXバンドESR装置を使い室温で
行った。磁場は 0 〜 5000 [Oe]を[100]画内にかけて（100）とあたる角度をパラメータにした。

αで記述される信号のアニーリング前の測定結果を図1に示す。これからcubicの4回対称が相
易に確認できる。またスピンハミルトニアンを直接コンピューターで対角化することによって得ら
れた角度変化を実線で示す。両者の比較からスピンハミルトニアンパラメータ：g, αの値を求
めることができる。アニーリング後は、g = 2 付近で小さな角度変化をする信号が現れ、その強度
がアニーリング温度で依存しているようである。

Dで記述されるtetragonal symmetry の信号は特定できていない。
1) W. Low, Ann. N.Y. Acad. Sci., 72, 69 (1958)

![図1: 共鳴磁場角度依存性 (111 [100] plane)](https://example.com/image1.png)
![図2: 計算による磁場とエネルギーの関係](https://example.com/image2.png)

---944---