<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>12. MgO単結晶中の鉄イオンの常磁性共鳴 早稲田大学理工学部物理学科 修士論文題目・アブストラクト 1987年度 その1</td>
</tr>
<tr>
<td>Author(s)</td>
<td>木村 研一</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 早稲田大学理工学部物理学科 修士論文 题目・アブストラクト 1987年度 その1</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-08-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93172</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
12. MgO単結晶中の鉄イオンの常磁性共鳴

木村 研一

非磁性酸化物（MgO）に鉄イオンを少量ドープした試料の常磁性共鳴吸収（ESR）を測定し、アニーリング条件による、鉄イオンを勧結晶場パラメーターの変化を調べる。

酸化マグネシウム単結晶（NaCl型）中に鉄イオンをドープすると、常温では3価イオンの共鳴が観測され、その角度変化をとると対称性はcubicであり、その挙動はパラメーターで記述される。1）また、それとは別の対称性を持つ信号も観測されている。2）これはFe^{3+}はMg^{2+}と置換し、電荷補償のためMg^{2+}の欠陥が生じると考えられるが、それがFe^{3+}の(110)方向のnearest neighborにある場合と(100)方向のnext nearest neighborにある場合があり、パラメーターDで記述される。

本研究ではa、Dで記述される各々の信号の空気中アニーリングの温度、時間による変化をとらえる事によってFe^{3+}とMg^{2+}欠陥の絆び付きの機構を探る。

試料は市販の単結晶（Fe 4600 ppm）を用いた。測定は通常のXバンドESR装置を使い室温で行った。磁場は0～5000[Oe]を[100]面内にかけて(100)面と反射角度をパラメーターにした。

aで記述される信号のアニーリング前の測定結果を図1に示す。これからcubicの4回対称が容易に確認できる。またスピンハミルトニアンを直接コンピューターで対角化することによって得られた角度変化を実線で示す。両者の比較からスピンハミルトニアンパラメーター：g、aの値を求めることができる。アニーリング後は、g=2付近で小さな角度変化をする信号が現れ、その強度がアニーリング温度に依存しているようである。

Dで記述されるtetragonal symmetryの信号は特徴が得られていない。

1) W. Low, Ann. N. Y. Acad. Sci., 72, 69(1958)

図1：共鳴強度の角度依存性（H||[100]plane）

図2：計算による磁場とエネルギーの関係

—944—