<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>7. Auger電子分光法によるSi(111)清浄表面及び吸着表面の表面準位の研究 早稲田大学理工学部物理学科修士論文題目・アブストラクト1987年度その1</td>
</tr>
<tr>
<td>Author(s)</td>
<td>井出隆</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 1988, 50(5): 939-939</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-08-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93177</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
7. Auger電子分光法によるSi(111)清浄表面及びAl吸着
表面の表面準位の研究

井 手 隆

表面における電子構造の研究は一般に光電子分光法 (Photoemission electron spectroscopy) を用いて行われている。光電子分光法は表面における状態密度 (Density of state) の空間的な平均を直接与えてくれる。一方オージー電子分光法 (Auger electron spectroscopy) は一般に表面における元素分析法として用いられているが、LVV等の価電子帯 (Valence level) を含む遷移過程においてそのスペクトル中にValence stateの情報も含まれているためその電子構造に対する研究にも用いることができる。またその遷移が一つの原子に局在したエネルギーレベルを含むため、蒸発系などにおいては、この方法を用いることによって蒸発原子に局在した電子状態の情報を得ることができる。オージー電子の運動エネルギーは次の式で与えられる。

\[E_{	ext{E}} = E_{2p} - 2E_V - \phi - \delta. \]

ここで \(\phi, \delta \) はそれぞれ検出器の仕事関数、イオン化にともなう補正項である。

本研究では、Si(111)-7x7清浄表面およびこの表面にAlを約600℃で蒸発して得られるSi(111)√3x√3-Al表面に対してSiおよびAlのLVVオージークスペクトルを測定した。既に光電子分光法の測定により報告されているSiおよびAlの2p準位の値とvalence levelの値を組み合わせて上の式に代入することによって得られる値とオージークスペクトル中のピークのエネルギー値を比較することによって、オージー変移の始状態および終状態を明らかにをすることができた。この結果を現在最も広く受け入れられている構造モデルであるSi(111)-7x7 DAS modelおよびSi(111)√3x√3 T. modelに適用した結果次の図に示すような結合電子とエネルギー準位の関係があることが結論される。

\[E_{	ext{E}} = E_{2p} - 2E_V - \phi - \delta. \]

---939---